Two thousand nineteen novel coronavirus SARS-CoV-2, the pathogen of COVID-19, has caused a catastrophic pandemic, which has a profound and widespread impact on human lives and social economy globally. However, the molecular perturbations induced by the SARS-CoV-2 infection remain unknown. In this paper, from the perspective of omnigenic, we analyze the properties of the neighborhood perturbed by SARS-CoV-2 in the human interactome and disclose the peripheral and core regions of virus-host network (VHN). We find that the virus-host proteins (VHPs) form a significantly connected VHN, among which highly perturbed proteins aggregate into an observable core region. The non-core region of VHN forms a large scale but relatively low perturbed periphery. We further validate that the periphery is non-negligible and conducive to identifying comorbidities and detecting drug repurposing candidates for COVID-19. We particularly put forward a flower model for COVID-19, SARS and H1N1 based on their peripheral regions, and the flower model shows more correlations between COVID-19 and other two similar diseases in common functional pathways and candidate drugs. Overall, our periphery-core pattern can not only offer insights into interconnectivity of SARS-CoV-2 VHPs but also facilitate the research on therapeutic drugs.
Thousands of genes are perturbed by cancer, and these disturbances can be seen in transcriptome, methylation, somatic mutation, and copy number variation omics studies. Understanding their connectivity patterns as an omnigenic neighbourhood in a molecular interaction network (interactome) is a key step towards advancing knowledge of the molecular mechanisms underlying cancers. Here, we introduce a unified connectivity line (CLine) to pinpoint omics-specific omnigenic patterns across 15 curated cancers. Taking advantage of the universality of CLine, we distinguish the peripheral and core genes for each omics aspect. We propose a network-based framework, multi-omics periphery and core (MOPC), to combine peripheral and core genes from different omics into a button-like structure. On the basis of network proximity, we provide evidence that core genes tend to be specifically perturbed in one omics, but the peripheral genes are diversely perturbed in multiple omics. And the core of one omics is regulated by multiple omics peripheries. Finally, we take the MOPC as an omnigenic neighbourhood, describe its characteristics, and explore its relative contribution to network-based mechanisms of cancer. We were able to present how multi-omics perturbations percolate through the human interactome and contribute to an integrated periphery and core.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.