3D point cloud classification has wide applications in the field of scene understanding. Point cloud classification based on points can more accurately segment the boundary region between adjacent objects. In this paper, a point cloud classification algorithm based on a single point multilevel features fusion and pyramid neighborhood optimization are proposed for a Airborne Laser Scanning (ALS) point cloud. First, the proposed algorithm determines the neighborhood region of each point, after which the features of each single point are extracted. For the characteristics of the ALS point cloud, two new feature descriptors are proposed, i.e., a normal angle distribution histogram and latitude sampling histogram. Following this, multilevel features of a single point are constructed by multi-resolution of the point cloud and multi-neighborhood spaces. Next, the features are trained by the Support Vector Machine based on a Gaussian kernel function, and the points are classified by the trained model. Finally, a classification results optimization method based on a multi-scale pyramid neighborhood constructed by a multi-resolution point cloud is used. In the experiment, the algorithm is tested by a public dataset. The experimental results show that the proposed algorithm can effectively classify large-scale ALS point clouds. Compared with the existing algorithms, the proposed algorithm has a better classification performance.
This paper presents a novel framework to achieve 3D semantic labeling of objects (e.g., trees, buildings, and vehicles) from airborne laser-scanning point clouds. To this end, we propose a framework which consists of hierarchical clustering and higher-order conditional random fields (CRF) labeling. In the hierarchical clustering, the raw point clouds are over-segmented into a set of fine-grained clusters by integrating the point density clustering and the classic K-means clustering algorithm, followed by the proposed probability density clustering algorithm. Through this process, we not only obtain a more uniform size and more homogeneous clusters with semantic consistency, but the topological relationships of the cluster’s neighborhood are implicitly maintained by turning the problem of topology maintenance into a clustering problem based on the proposed probability density clustering algorithm. Subsequently, the fine-grained clusters and their topological context are fed into the CRF labeling step, from which the fine-grained cluster’s semantic labels are learned and determined by solving a multi-label energy minimization formulation, which simultaneously considers the unary, pairwise, and higher-order potentials. Our experiments of classifying urban and residential scenes demonstrate that the proposed approach reaches 88.5% and 86.1% of “m F 1 ” estimated by averaging all classes of the F 1 -scores. We prove that the proposed method outperforms five other state-of-the-art methods. In addition, we demonstrate the effectiveness of the proposed energy terms by using an “ablation study” strategy.
The objection detection of panoramic image is the key part of street view, intelligent transportation, automatic driving and other technologies. Due to the shortcomings of existing algorithms in detecting panoramic images, firstly a high-resolution panoramic image dataset is introduced, then the multi-scale feature pyramid networks (MS-RPN) structure is proposed and a new network with Sim-Inception module is designed. The network can extract different scales of objects from different feature layers, so that the small object in the image can also be accurately detected. Finally, the entire detection network is trained by using the dataset constructed in this study. Meanwhile, the ROIPool is replaced by ROIAlign and the loss function is adjusted according to the network structure. The experimental results show that the detection performance on the panoramic dataset is significantly improved by authors' proposed algorithm, which is better than other deep learning algorithms, especially for small object in the image.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.