Tumor heterogeneity and changes in epidermal growth factor receptor (EGFR) mutation status over time challenge the design of effective EGFR tyrosine kinase inhibitor (TKI) treatment strategies for non-small cell lung cancer (NSCLC). Therefore, there is an urgent need to develop techniques for comprehensive tumor EGFR profiling in real time, particularly in lung cancer precision medicine trials. We report a positron emission tomography (PET) tracer, -(3-chloro-4-fluorophenyl)-7-(2-(2-(2-(2-F-fluoroethoxy) ethoxy) ethoxy) ethoxy)-6-methoxyquinazolin-4-amine (F-MPG), with high specificity to activating EGFR mutant kinase. We evaluate the feasibility of using F-MPG PET for noninvasive imaging and quantification of EGFR-activating mutation status in preclinical models of NSCLC and in patients with primary and metastatic NSCLC tumors.F-MPG PET in NSCLC animal models showed a significant correlation ( = 0.9050) between F-MPG uptake and activating EGFR mutation status. In clinical studies with NSCLC patients ( = 75), the concordance between the detection of EGFR activation by F-MPG PET/computed tomography (CT) and tissue biopsy reached 84.29%. There was a greater response to EGFR-TKIs (81.58% versus 6.06%) and longer median progression-free survival (348 days versus 183 days) in NSCLC patients whenF-MPG PET/CT SUV (maximum standard uptake value) was ≥2.23 versus <2.23. Our study demonstrates that F-MPG PET/CT is a powerful method for precise quantification of EGFR-activating mutation status in NSCLC patients, and it is a promising strategy for noninvasively identifying patients sensitive to EGFR-TKIs and for monitoring the efficacy of EGFR-TKI therapy.
In this contribution, three o-nitrobenzyl-based photobase systems were synthesized and evaluated for visible light initiated thiol-Michael addition polymerizations. With a modified structure, the (3,4-methylenedioxy-6-nitrophenyl)-propyloxycarbonyl (MNPPOC) protected base performance exceeds that of the nonsubstituted 2-(2-nitrophenyl)-propyloxycarbonyl (NPPOC) protected base and an ITX sensitized photobase system, with respect to both long-wavelength light sensitivity and photolytic efficiency. In material synthesis, MNPPOC-TMG is capable of initiating photo thiol-Michael polymerization efficiently and orthogonally with only limited visible light exposure and generating a highly homogeneous cross-linked polymer network. This approach enables the thiol-Michael “click” reaction to be conducted with a low-energy, visible light irradiation and, thus, expands its applications in biocompatible and UV sensitive materials.
Eighty percent of lung cancers originate as subtle premalignant changes in the airway mucosal epithelial layer of bronchi and alveoli, which evolve and penetrate deeper into the parenchyma. Liquid-ventilation, with perfluorocarbons (PFC) was first demonstrated in rodents in 1966 then subsequently applied as lipid-encapsulated PFC emulsions to improve pulmonary function in neonatal infants suffering with respiratory distress syndrome in 1996. Subsequently, PFC nanoparticles (NP) were extensively studied as intravenous (IV) vascular-constrained nanotechnologies for diagnostic imaging and targeted drug delivery applications.Methods: This proof-of-concept study compared intratumoral localization of fluorescent paramagnetic (M) PFC NP in the Vx2 rabbit model using proton (1H) and fluorine (19F) magnetic resonance (MR) imaging (3T) following intratracheal (IT) or IV administration. MRI results were corroborated by fluorescence microscopy.Results: Dynamic 1H-MR and 19F-MR images (3T) obtained over 72 h demonstrated marked and progressive accumulation of M-PFC NP within primary lung Vx2 tumors during the first 12 h post IT administration. Marked 1H and 19F MR signal persisted for over 72 h. In contradistinction, IV M-PFC NP produced a modest transient signal during the initial 2 h post-injection that was consistent circumferential blood pool tumor enhancement. Fluorescence microscopy of excised tumors corroborated the MR results and revealed enormous intratumor NP deposition on day 3 after IT but not IV treatment. Rhodamine-phospholipid incorporated into the PFC nanoparticle surfactant was distributed widely within the tumor on day 3, which is consistent with a hemifusion-based contact drug delivery mechanism previously reported. Fluorescence microscopy also revealed similar high concentrations of M-PFC NP given IT for metastatic Vx2 lung tumors. Biodistribution studies in mice revealed that M-PFC NP given IV distributed into the reticuloendothelial organs, whereas, the same dosage given IT was basically not detected beyond the lung itself. PFC NP given IT did not impact rabbit behavior or impair respiratory function. PFC NP effects on cells in culture were negligible and when given IV or IT no changes in rabbit hematology nor serum clinical chemistry parameters were measured.Conclusion: IT delivery of PFC NP offered unique opportunity to locally deliver PFC NP in high concentrations into lung cancers with minimal extratumor systemic exposure.
To prepare and evaluate a new radiotracer 18F-IRS for molecular imaging mutant EGF Receptors in vitro and vivo. Uptake and efflux of 18F-IRS were performed with four NSCLC cell lines including HCC827, H1975, H358 and H520. In vivo tumor targeting and pharmacokinetics of the radiotracers were also evaluated in HCC827, H1975, H358 and H520 tumor-bearing nude mice by PET/CT imaging. Ex vivo biodistribution assays were performed to quantify the accumulation of 18F-IRS in vivo. We also performed 18F-IRS PET/CT imaging of three patients with NSCLC. We labeled this small molecule with QD620 for flow cytometry and confocal imaging analyses. The uptakes of 18F-IRS by HCC827 and HCC827 tumors were significantly higher than those of H358, H1975 and H520, and they were reduced by the addition of 100 μM of gefitinib. Biodistribution experiments showed an accumulation of 18F-IRS in tumors of HCC827 xenografts. Flow cytometry and confocal imaging with QD620-IRS further demonstrated that binding specifically to HCC827 cells. 18F-IRS accumulation was preferential in the tumor, which was NSCLC with responsive EGFR exon 19 deleted. 18F-IRS showed high binding stability and specificity to 19 exon deleted EGFR mutation in vitro and vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.