Worldwide, aspirin and ibuprofen are the most commonly used non-steroidal anti-inflammatory drugs (NSAIDs). Some adverse reactions, including gastrointestinal reactions, have been concerned extensively. Nevertheless, the mechanism of liver injury remains unclear. In the present study, we focused on the metabolism of liver cytochrome P450 (CYP450) and ultrastructural morphology of liver cells. A total of thirty rats were divided into three groups of 10. Rats in the aspirin and ibuprofen groups were given enteric-coated aspirin (15 mg/kg) and ibuprofen (15 mg/kg), respectively by gavage for four weeks. The body weights were recorded every two days. Liver function and metabolic capacity of CYP450 were studied on days 14 and 28. We then conducted ultrastructural examinations. Body weights in the Ibuprofen group were lower than those of the Control group, and ALT and AST levels were significantly higher (P < 0.05). There were no significant differences in terms of body weight, ALT or AST between the Aspirin and Control groups. The metabolic capacity of CYP450 was evaluated using five probe drugs, phenacetin, tolbutamide, metoprolol, midazolam, and bupropion. We found that ibuprofen and aspirin induced metabolism of the probe drugs. Moreover, according to the pharmacokinetic data, the Control, Aspirin and Ibuprofen groups could be discriminated accurately. Ultrastructural examination showed that the number of mitochondria was increased in both the Ibuprofen and Aspirin groups. Long-term administration of enteric-coated aspirin and ibuprofen induced the metabolic activity of the CYP450 enzyme. Aspirin had better tolerability than did ibuprofen, as reflected by pharmacokinetic data of probe drug metabolism.
The ternary optical computer (TOC) has attracted increasing attention from its providers and potential customers because of the advantages of its optical processor, such as low power consumption, numerous trits, parallelism, dynamical reconfigurability and bitwise allocability. The analysis of its performance has become an urgent problem to be solved in recent years. This paper builds a four-stage TOC service model by introducing synchronous multi-vacations and tandem queueing. Here, a vacation refers specifically to an optical processor vacation. Additionally, we propose a processor-divided-equally(PDE) strategy and a task scheduling and optical processor allocation algorithm under this strategy. Assuming that the intervals of task arrival follow a homogeneous Poisson process, we obtain some important performance indicators, such as the mean response time, mean number of tasks, and optical processor utilization under the PDE strategy, which are based on the M/M/1 and M/M/n queueing systems with exhaustive service and synchronous multivacations. The numerical results illustrate that the number of small optical processors has an important effect on the performance of TOC and that high vacation rate can improve the system performance to some extent. INDEX TERMS Synchronous multi-vacations, tandem queueing, exhaustive service, response time, processor-divided-equally strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.