The physical mechanism of the dynamics in laser–material interaction has been an important research area. In addition to theoretical analysis, direct imaging‐based observation of ultrafast dynamic processes is an important approach to understand many fundamental issues in laser–material interaction such as inertial confinement fusion (ICF), laser accelerator construction, and advanced laser production. In this review, the principles and applications of three types of commonly used ultrafast imaging methods are introduced, including the pump–probe, X‐ray diagnosis, and single‐shot optical burst imaging. We focus on the technical features such as the spatial and temporal resolution for each technique, and present several conventional applications.
Sequentially timed all-optical mapping photography (STAMP) is an effective tool for observing ultrafast and non-repetitive events. In the classical design of STAMP, the spatial resolution of the acquired images is different in two directions, severely limiting the scalability of STAMP. Here, by introducing an asymmetric optical design, we make the slicing mirror locate in the hybrid plane of the system, i.e., the image plane in the direction of the short edge, while the Fourier plane is in the direction of the long edge. This avoids the loss of the high-frequency components of the images and hence offers the possibility to further extend the frame number of the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.