Traffic sign detection is a challenging task. Although existing deep learning techniques have made great progress in detecting traffic signs, there are still many unsolved challenges. We propose a novel traffic sign detection network named ReYOLO that learns rich contextual information and senses scale variations to efficiently detect small and ambiguous traffic signs in the wild. Specifically, we first replace the conventional convolutional block with modules that are built by structural reparameterization methods and are embedded into bigger structures, thus decoupling the training structures and the inference structures using parameter transformation, and allowing the model to learn more effective features. We then design a novel weighting mechanism which can be embedded into a feature pyramid to exploit foreground features at different scales to narrow the semantic gap between multiple scales. To fully evaluate the proposed method, we conduct experiments on a traditional traffic sign dataset GTSDB as well as two new traffic sign datasets TT100K and CCTSDB2021, achieving 97.2%, 68.3% and 83.9% mAP (Mean Average Precision) for the three-class detection challenge in these three datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.