Novel (nua) kinase family 1 (NUAK1) is a member of the human adenosine monophosphate-activated protein kinases family, which is overexpressed in multiple human malignancies and thought to be involved in tumor invasion and metastasis ability. Our study is to investigate the association of NUAK1 expression with clinicopathological parameters and prognostic significance of patients with gastric cancer. The expression patterns of the NUAK1 protein in 117 primary archival gastric cancer specimens and 46 adjacent normal epithelial tissues from patients were detected by immunohistochemistry assay. Staining evaluation results were analyzed statistically in relation to various clinicopathological characters, recurrence-free survival and overall survival. High level of NUAK1 expression was detected in gastric cancer, significantly more than in adjacent normal epithelial cells. In gastric cancer, NUAK1 was positively correlated with depth of invasion, lymph node metastasis, pathological stage, surgical resection and histological differentiation. However, no correlations between NUAK1 expression and patients' age, sex, tumor size, location, CA19-9 or CEA were detected. The recurrence-free survival and overall survival were significantly shorter for patients with NUAK1 higher scores than those with NUAK1 lower scores. Multivariate analysis identified NUAK1 was an independent prognostic factor for both recurrence-free survival and overall survival. Our findings provided convincing evidence for NUAK1 overexpression, which was tightly associated with more aggressive tumor behavior and a poor prognosis, indicating that NUAK1 is a valuable molecular biomarker for gastric cancer progression. It might also act as a promising target for both prognostic prediction and therapeutics.
Abstract. Multidrug resistance (MDR) to chemotherapeutic agents is a major obstacle for the treatment of various types of cancers. The exact mechanism of MDR has not yet been fully clarified, although it has been frequently associated with the variation of intracellular redox status. The levels of intracellular glutathione (GSH) are considered to play a vital role in the regulation of the intracellular redox status. In our study, we investigated the effects of buthionine sulfoximine (BSO), an inhibitor of GSH biosynthesis, and NAC, a cysteine source for GSH synthesis, on sensitive gastric adenocarcinoma cells (SGC7901) and cisplatin-resistant SGC7901/DDP cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The two cell lines were pretreated with various non-toxic concentrations of BSO for 24 h and combined with fluorouracil (5-FU) or mitomycin (MMC) in the presence or absence of NAC before culturing further. After various treatments, the IC 50 values of MMC and 5-FU were calculated and intracellular GSH levels were measured using the glutathione reductase/5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) recycling assay without anticancer drug stimulation under the same microenvironments. The study demonstrated that BSO increased the sensitivity of the cells to chemotherapeutics while NAC exhibited the reverse effect, particularly in drug-resistant cells. It is, therefore, possible that changes in intracellular GSH levels affect the chemosensitivity of the resistant cells to a greater extent than that of their parent cells. This study indicates that variation in the intracellular redox status may be closely correlated with MDR and may provide a valuable basic strategy for anticancer therapy.
Objective. This study was designed to identify potential biomarkers for ulcerative colitis (UC) and analyze the immune infiltration characteristics in UC. Methods. Datasets containing human UC and normal control tissues (GSE87466, GSE107597, and GSE13367) were downloaded from the GEO database. Then, the GSE87466 and GSE107597 datasets were merged, and the differentially expressed genes (DEGs) between UC and normal control tissues were screened out by the “limma R” package. The LASSO regression model and support vector machine recursive feature elimination (SVM-RFE) were performed to screen out the best biomarkers. The GSE13367 dataset was used as a validation cohort, and the receiver operating characteristic curve (ROC) was used to evaluate the diagnostic performance. Finally, the immune infiltration characteristics in UC were explored by CIBERSORT, and we further analyzed the correlation between potential biomarkers and different immune cells. Results. A total of 76 DEGs were screened out, among which 56 genes were upregulated and 20 genes were downregulated. Functional enrichment analysis revealed that these DEGs were mainly involved in immune response, chemokine signaling, IL−17 signaling, cytokine receptor interactions, inflammatory bowel disease, etc. ABCG2, HSPB3, SLC6A14, and VNN1 were identified as potential biomarkers for UC and validated in the GSE13367 dataset ( AUC = 0.889 , 95% CI: 0.797~0.961). Immune infiltration analysis by CIBERSORT revealed that there were significant differences in immune infiltration characteristics between UC and normal control tissues. A high level of memory B cells, γδ T cells, activated mast cells, M1 macrophages, neutrophils, etc. were found in the UC group, while a high level of M2 type macrophages, resting mast cells, eosinophils, CD8+ T cells, etc. were found in the normal control group. Conclusion. ABCG2, HSPB3, SLC6A14, and VNN 1 were identified as potential biomarkers for UC. There was an obvious difference in immune infiltration between UC and normal control tissues, which may provide help to guide individualized treatment and develop new research directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.