Acute myeloid leukemia is the most common acute leukemia in adults, with accumulation of abundant blasts and impairment of hematogenic function. Despite great advances in diagnosis and therapy, the overall survival of patients with acute myeloid leukemia remains poor. Leukemia stem cells are the root cause of relapse and chemoresistance in acute myeloid leukemia. The tumor immune microenvironment is another trigger to induce recurrence and drug resistance. Understanding the underlying factors influencing leukemia stem cells and the tumor immune microenvironment is an urgent and unmet need. Intriguingly, N6-methyladenosine, the most widespread internal mRNA modification in eukaryotes, is found to regulate both leukemia stem cells and the tumor immune microenvironment. Methyltransferases and demethylases cooperatively make N6-methyladenosine modification reversible and dynamic. Increasing evidence demonstrates that N6-methyladenosine modification extensively participates in tumorigenesis and progression in various cancers, including acute myeloid leukemia. In this review, we summarize the current progress in studies on the functions of N6-methyladenosine modification in acute myeloid leukemia, especially in leukemia stem cells and the tumor immune microenvironment. We generalize the landscape of N6-methyladenosine modification in self-renewal of leukemia stem cells and immune microenvironment regulation, as well as in the initiation, growth, proliferation, differentiation, and apoptosis of leukemia cells. In addition, we further explore the clinical application of N6-methyladenosine modification in diagnosis, prognostic stratification, and effect evaluation. Considering the roles of N6-methyladenosine modification in leukemia stem cells and the tumor immune microenvironment, we propose targeting N6-methyladenosine regulators as one stone to kill two birds for acute myeloid leukemia treatment.
Patients with chronic myeloid leukemia (CML) show resistance to tyrosine kinase inhibitors (TKIs) targeting ABL1 due to the emergence of BCR::ABL1 mutants, especially compound mutants during the treatment, which brings great challenges to clinical practice. Combination therapy is an effective strategy for drug resistance. GMB-475, a proteolysis targeting chimera (PROTAC) targeting the myristoyl pocket of ABL1 in an allosteric manner, degrades the BCR::ABL1 through the ubiquitin–proteasome pathway. In this study, we combined GMB-475 with orthosteric TKIs targeting ABL1 to overcome resistance. We constructed Ba/F3 cells carrying BCR::ABL1 mutants by gene cloning technology and compared the effects of combination therapy with those of monotherapy on the biological characteristics and signaling pathways in CML cells. We found that the effects of ABL1 inhibitors, including imatinib, dasatinib, ponatinib, and ABL001, on growth inhibition and promoting apoptosis of Ba/F3 cells with BCR::ABL1 mutants, especially compound mutants, were weakened. GMB-475 combined with TKIs, especially dasatinib, synergistically inhibited growth, promoted apoptosis, and blocked the cell cycle of Ba/F3 cells carrying BCR::ABL1 mutants and synergistically blocked multiple molecules in the JAK-STAT pathway. In conclusion, dasatinib enhanced the antitumor effect of GMB-475; that is, the combination of PROTAC targeting ABL1 in an allosteric manner and orthosteric TKIs, especially dasatinib, provides a novel idea for the treatment of CML patients with BCR::ABL1 mutants in clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.