The self-balanced loading test is a state-of-art pile testing method, but its suitability to pile bearing capacity determination in transformer substation engineering in mountainous and hilly areas is not yet clear. In this study, a two-dimensional axisymmetric numerical model is established by the PLAXIS software to simulate the behavior and bearing mechanism of shallow rock-socketed short piles based on the self-balanced loading test. The model is first validated by simulating the field tests of two adjacent piles under self-balanced loading. Then the influence factors of the load-displacement curves of piles are analyzed. Thereafter, the mechanical mechanism of the self-balanced loading tests is simulated and compared with the conventional static loading tests. It is observed that the rock modulus, rock-socketed depth of piles, and burial depth of the Osterberg Cell affect the load-displacement significantly, but the cohesion of the rocks affects little. Moreover, compared with the conventional static loading tests, the shear stress of the pile-soil interface distributes less uniformly under self-balanced loading conditions. On this basis, a bearing capacity computation method of shallow rock-socketed short piles based on the self-balanced loading test is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.