Polygonum cuspidatum Sieb. et Zucc is an important industrial crop because it contains a large amount of medicinal secondary metabolites (such as polydatin, resveratrol, chrysophanol, and emodin). However, it is unclear whether root endophytic fungi increase the content of secondary metabolites in the plant. This study aimed to analyze the effects of Funneliformis mosseae (Fm) and Piriformospora indica (Pi) alone or in combination on plant growth, root morphology, thirteen sugars concentrations, and six secondary metabolites (physcion, chrysophanol, emodin, aloe-emodin, polydatin, and resveratrol) concentrations of P. cuspidatum. After 11 weeks of the fungal inoculation, the roots could be colonized by Fm and Pi single or in combination, along with the higher root colonization frequency of Fm > Pi > Fm + Pi in the descending order. In addition, Fm and Pi improved plant growth performance (plant height, stem diameter, leaf number, and shoot and root biomass) and root morphology (average diameter, maximum diameter, total length, area, and volume) to varying degrees, depending on fungal inoculations, in which Pi displayed a relatively better effect on plant growth. Single Fm and Pi inoculation significantly increased three disaccharides (sucrose, maltose, and trehalose) accumulation, while dual inoculum (Fm + Pi) only elevated sucrose concentrations. Most monosaccharides concentrations, such as D-arabinose, D-galactose, D-sorbitol, D-fructose, glucose, and L-rhamnose were not altered or inhibited by the endophytic fungi, except the increase in L-fucose and inositol. All fungal treatments significantly increased root chrysophanol and resveratrol concentrations, while decreased aloe-emodin concentrations. In addition, single Pi and dual Fm + Pi increased emodin concentrations, and single Fm and dual Fm + Pi elevated physcion and polydatin concentrations. It was concluded that Fm and Pi promoted the growth of P. cuspidatum, and the combination of Fm and Pi was more conducive to the production of some secondary metabolites than single inoculation.
Polygonum cuspidatum Sieb. et Zucc. is a major raw material for the extraction of drugs such as resveratrol, while the over-exploitation of P. cuspidatum decreases the yield and drug components. The purpose of this study was to analyze the effect of inoculation with root endophytic fungi Funneliformis mosseae and Piriformospora indica singly or in combination in biomass production, physiological activities (e.g., chlorophyll, soluble protein, and gas exchange) and main medicinal ingredients of P. cuspidatum, accompanied by the expression levels of associated genes in resveratrol biosynthesis. Single and co-inoculation with P. indica significantly improved shoot and root biomass production, and single and co-inoculation with F. mosseae and P. indica, especially single P. indica, significantly promoted leaf chlorophyll and soluble-protein concentrations and improved leaf gas exchange, including photosynthetic rate, transpiration rate, stomatal conductance, and intercellular CO2 concentration. The application of endophytic fungi increased resveratrol and polydatin concentrations, while it affected chrysophanol, emodin, and physcion concentrations in a complex manner. In addition, F. mosseae inoculation and co-inoculation induced the expression of PcCRS1, PcRS11, PcRS, and PcSTS, and only single F. mosseae and P. indica inoculation up-regulated the expression of PcCHS1 and PcCHS2. It was concluded that endophytic fungi accelerated biomass production, leaf physiological activity, and resveratrol accumulation in P. cuspidatum, which was associated with the up-regulation of related gene expression in resveratrol biosynthesis.
The medicinal plant Polygonum cuspidatum Sieb. Et Zucc is rich in stilbenes (e.g., polygonin and resveratrol) and anthraquinones (e.g., emodin) for the therapy of human diseases, while how to increase the growth and medicinal composition concentrations of P. cuspidatum has become an urgent issue. The aim of the present study was to evaluate the effects of inoculation with an arbuscular mycorrhizal (AM) fungus, Funneliformis mosseae, on plant growth, phosphorus (P) acquisition, medicinal component concentrations, and expressions of resveratrol synthesis-associated enzyme genes of P. cuspidatum at two P levels (0 M and 0.2 M). P supply (0.2 M) stimulated root AM fungal colonization rate. F. mosseae inoculation significantly improved growth performance (height, diameter, and biomass) and root morphology (diameter, length, and projected area), irrespectively of substrate P levels. P supply and F. mosseae distinctly increased soil acid and neutral phosphatase activities, as well as root P concentrations. P supply increased root physcion and resveratrol concentrations in inoculated and uninoculated plants, along with up-regulated expressions of PcCHS1, PcCRS1, PcRS11, and PcSTS. AM plants represented significantly higher root aloe-emodin, chrysophanol, emodin, physcion, polydatin, and resveratrol concentrations than non-AM plants irrespective of P levels, coupled with up-regulated expressions of PcCHS1, PcCHS2, PcRS11, PcRS, and PcSTS. It is concluded that 0.2 M P supply and F. mosseae inoculation promoted chrysophanol, physcion, polydatin, and resveratrol concentrations of P. cuspidatum, with the increase in resveratrol associated with up-regulated expressions of related genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.