[1] Fine particles (PM 2.5 ) were collected using filter-based high-volume samplers during summer-winter 2008 at a rural site in the central Pearl River Delta (PRD), south China, to determine typical secondary organic aerosol (SOA) tracers from significant biogenic (isoprene, monoterpenes, and sesquiterpenes) and anthropogenic (aromatics) precursors. Average isoprene SOA tracers were significantly higher during summer (126 ng m À3 ) than during fall-winter (25.1 ng m À3 ), owing largely to the higher isoprene emission and reaction rates in summer. Average monoterpene SOA tracers during summer (11.6 ng m À3) and fall-winter (16.4 ng m À3) showed much less difference compared to isoprene SOA tracers, probably resulting from the counteracting effects of temperature on the precursor emission/tracer formation and on gas/particle partitioning. The concentrations of the aromatics' SOA tracer (2,3-dihydroxy-4-oxopentanoic acid) ranged from 1.70 to 52.0 ng m À3 with an average of 15.1 ng m À3, which was the highest reported in ambient air. The secondary organic carbon (SOC) estimated by the SOA-tracer method averaged 3.07 mg C m À3 in summer and 2.00 mg C m À3 in fall-winter, contributing 38.4% and 8.7% to OC, respectively. During summer, aromatics-SOC and isoprene-SOC reached 2.25 AE 1.5 mg C m À3 and 0.64 AE 0.7 mg C m À3 and accounted for 76% and 18% of the estimated SOC, respectively, while during fall-winter, aromatics-SOC (1.64 AE 1.4 mg C m À3) was dominant with a share of 79% in total estimated SOC. These results indicated that anthropogenic aromatics were dominant SOC precursors in the highly industrialized and urbanized PRD region. During summer, SOC levels estimated by elemental carbon (EC) tracer method were not only consistent with but also correlated well with those by SOA-tracer method. During fall-winter, however, SOC by SOA-tracer method was only about one third of that by EC-tracer method. Their gaps were significantly correlated with the biomass burning tracer levoglucosan, indicating that input from biomass burning emission with very high ratios of OC/EC during fall-winter would result in an overestimate of SOC by EC-tracer method. Therefore cautions should be taken when estimating SOC by EC-tracer method, especially when biomass burning exhibits significant influences.
Twenty-four hour integrated filter samples of fine particulate matter (PM2.5) were collected from May 2004 to April 2005 at one rural site and three urban sites located in the southeastern United States. Filters were extracted and analyzed for both biogenic secondary organic aerosol (SOA) tracers via gas chromatography-mass spectrometry (GC-MS), and water-soluble organic carbon (WSOC) concentrations. The tracers reported in this study include isoprene-derived 2-methylthreitol and 2-methylerythritol, as well as pinene-derived cis-pinonic acid. The mean ambient concentrations ranged from 21.7 to 94.3 ng/m3, 5.31 to 17.9 ng/m3, and 1.87 to 3.18 microgC/m3 for 2-methyltetrols (sum of 2-methylerythritol and 2-methylthreitol), cispinonic acid and WSOC, respectively. Distinct spatial distributions were observed for all tracers with the highest concentration at the rural site and the lowest level at a coastal site. Although 2-methyltetrols were small fractions of WSOC, varying from 0.35% at an urban site to highest fractions of 1.09% at the rural site, WSOC exhibited significant correlation with 2-methyltetrols during summer, suggesting isoprene SOA makes an important contribution to WSOC. 2-Methyltetrols had the highest concentrations during the summer,when high temperature, intense solar radiation, and high ozone level occurred. However, no obvious seasonal variation was found for cispinonic acid. Between inland sites WSOC was more spatially homogeneous than the 2-methyltetrols, suggesting that WSOC was produced from a variety of mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.