A novel and highly efficient strategy for the synthesis of isocoumarins and phthalides through a palladium(0)-catalyzed reaction incorporating tert-butyl isocyanide has been developed. This process, providing one of the simplest methods for the synthesis of this class of valuable lactones, involves two steps including cyclization reaction and simple acid hydrolysis. The methodology is tolerant of a wide range of substrates and applicable to library synthesis.
A simple and highly efficient strategy for the synthesis of 3-substituted isocoumarins through a copper(I)-catalyzed reaction of 1-(2-halophenyl)-1,3-diones has been developed. The procedure is based on a cascade copper-catalyzed intramolecular Ullmann-type C-arylation and rearrangement process. This methodology is tolerant of a wide range of substrates and applicable to library synthesis.
The Buchwald–Hartwig coupling/Michael addition sequence has been successfully applied to the synthesis of functionalized 1,2‐disubstituted 4‐quinolones using Pd(OAc)2 as a catalyst and PPh3 as a ligand. Under these conditions, the intermediate products first formed from chalcones and primary amines underwent catalytic dehydrogenation to yield the 1,2‐disubstituted 4‐quinolones.
A simple and efficient palladium-catalyzed carbonylative Sonogashira coupling via tert-butyl isocyanide insertion has been developed, which demonstrates the utility of isocyanides in intermolecular C-C bond construction. This methodology provides a novel pathway for the synthesis of alkynyl imines which can undergo simple silica gel catalyzed hydrolysis to afford alkynones. The approach is tolerant of a wide range of substrates and applicable to library synthesis.
A facile and efficient copper-catalyzed method for the synthesis of 4H-3,1-benzoxazin-4-one derivatives has been developed. This procedure is based on a tandem intramolecular C-N coupling/rearrangement process. This method would provide a new and useful strategy for construction of N-heterocycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.