The reaction of cobalt(III) acetate with excess manganese(II) acetate in acetic acid occurs in two stages, since the two forms Co(IIIc) and Co(IIIs) are not rapidly equilibrated and thus react independently. The rate constants at 24.5 degrees C are kc = 37.1 +/- 0.6 L mol-1 s-1 and ks = 6.8 +/- 0.2 L mol-1 s-1 at 24.5 degrees C in glacial acetic acid. The Mn(III) produced forms a dinuclear complex with the excess of Mn(II). This was studied independently and is characterized by the rate constant (3.43 +/- 0.01) x 10(2) L mol-1 s-1 at 24.5 degrees C. A similar interaction between Mn(III) and Co(II) is substantially slower, with k = (3.73 +/- 0.05) x 10(-1) L mol-1 s-1 at 24.5 degrees C. Mn(II) is also oxidized by Ce(IV), according to the rate law -d[Ce(IV)]/dt = k[Mn(II)]2[Ce(IV)], where k = (6.0 +/- 0.2) x 10(4) L2 mol-2 s-1. The reaction between Mn(II) and HBr2., believed to be involved in the mechanism by which Mn(III) oxidizes HBr, was studied by laser photolysis; the rate constant is (1.48 +/- 0.04) x 10(8) L mol-1 s-1 at approximately 23 degrees C in HOAc. Oxidation of Co(II) by HBr2. has the rate constant (3.0 +/- 0.1) x 10(7) L mol-1 s-1. The oxidation of HBr by Mn(III) is second order with respect to [HBr]; k = (4.10 +/- 0.08) x 10(5) L2 mol-2 s-1 at 4.5 degrees C in 10% aqueous HOAc. Similar reactions with alkali metal bromides were studied; their rate constants are 17-23 times smaller. This noncomplementary reaction is believed to follow that rate law so that HBr2. and not Br. (higher in Gibbs energy by 0.3 V) can serve as the intermediate. The analysis of the reaction steps then requires that the oxidation of HBr2. to Br2 by Mn(III) be diffusion controlled, which is consistent with the driving force and seemingly minor reorganization.
The oxidation of hydrogen bromide and alkali metal bromide salts to bromine in acetic acid by cobalt(III) acetate has been studied. The oxidation is inhibited by Mn(OAc)(2) and Co(OAc)(2), which lower the bromide concentration through complexation. Stability constants for Co(II)Br(n)() were redetermined in acetic acid containing 0.1% water as a function of temperature. This amount of water lowers the stability constant values as compared to glacial acetic acid. Mn(II)Br(n)() complexes were identified by UV-visible spectroscopy, and the stability constants for Mn(II)Br(n)() were determined by electrochemical methods. The kinetics of HBr oxidation shows that there is a new pathway in the presence of M(II)Br(n)(). Analysis of the concentration dependences shows that CoBr(2) and MnBr(2) are the principal and perhaps sole forms of the divalent metals that react with Co(III) and Mn(III). The interpretation of these data is in terms of this step (M, N = Mn or Co): M(OAc)(3) + N(II)Br(2) + HOAc --> M(OAc)(2) + N(III)Br(2)OAc. The second-order rate constants (L mol(-)(1) s(-)(1)) for different M, N pairs in glacial acetic acid are 4.8 (Co, Co at 40 degrees C), 0.96 (Mn, Co at 20 degrees C), 0.15 (Mn(III).Co(II), Co at 20 degrees C), and 0.07 (Mn, Mn at 20 degrees C). Following that, reductive elimination of the dibromide radical is proposed to occur: N(III)Br(2)OAc + HOAc --> N(OAc)(2) + HBr(2)(*). This finding implicates the dibromide radical as a key intermediate in this chemistry, and indeed in the cobalt-bromide catalyzed autoxidation of methylarenes, for which some form of zerovalent bromine has been identified. The selectivity for CoBr(2) and MnBr(2) is consistent with a pathway that forms this radical rather than bromine atoms which are at a considerably higher Gibbs energy. Mn(OAc)(3) oxidizes PhCH(2)Br, k = 1.3 L mol(-)(1) s(-)(1) at 50.0 degrees C in HOAc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.