Abstract-A non-inverting buck-boost dc-dc converter can work in buck, boost, or buck-boost mode. Hence, it provides a good solution when input voltage may be higher or lower than output voltage. However, a buck-boost converter requires four power transistors, rather than two. Therefore, its efficiency decreases, due to the conduction and switching losses of the two extra power transistors. Another issue of a buck-boost converter is how to smoothly switch its operational mode, when its input voltage approaches its output voltage. A hysteretic-current-mode non-inverting buck-boost converter with high efficiency and smooth mode transition is proposed, and it was designed and fabricated using TSMC 0.35 μm CMOS 2P4M 3.3V/5V mixed-signal polycide process. The input voltage may range from 2.5 to 5 V, the output voltage is 3.3 V, and the maximal load current is 400 mA. According to the measured results, the maximal efficiency reaches 98.1%, and the efficiencies measured in the entire input voltage and loading ranges are all above 80%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.