BackgroundThe aim of this study was to investigate the efficacy of hyperbaric oxygen in secondary brain injury after trauma and its mechanism in a rat model.Material/MethodsA rat model of TBI was constructed using the modified Feeney’s free-fall method, and 60 SD rats were randomly divided into three groups – the sham group, the untreated traumatic brain injury (TBI) group, and the hyperbaric oxygen-treated TBI group. The neurological function of the rats was evaluated 12 and 24 hours after TBI modeling; the expression levels of TLR4, IκB, p65, and cleaved caspase-3 in the peri-trauma cortex were determined by Western blot; levels of TNF-α, IL-6, and IL-1β were determined by ELISA; and apoptosis of the neurons was evaluated by TUNEL assay 24 hours after TBI modeling.ResultsHyperbaric oxygen therapy significantly inhibited the activation of the TLR4/NF-κB signaling pathway, reduced the expression of cleaved caspase-3, TNF-α, IL-6 and IL-1β (P<0.05), reduced apoptosis of the neurons and improved the neurological function of the rats (P<0.05).ConclusionsHyperbaric oxygen therapy protects the neurons after traumatic injury, possibly through inhibition of the TLR4/NF-κB signaling pathway.
The aim of the present study was to investigate the relationship between acute ischemic stroke and glutamate levels and to determine the prognosis value of plasma glutamate levels to predict the functional outcome. Two hundred and forty-two patients with acute ischemic stroke and 100 sex- and age-matched controls were included in the study. Plasma glutamate levels were determined by HPLC at admission in both groups. Stroke severity was assessed using the National Institutes of Health Stroke Scale (NIHSS). The modified Rankin Scale (mRS) scores at 3 months was determined to outcomes, and unfavorable outcomes were defined as mRS at 3-6. The prognostic value analyzed by logistic regression analysis, after adjusting for the possible confounders. In the 94 patients with an unfavorable functional outcome, plasma glutamate levels were higher compared with those in patients with a favorable outcome [221(IQR, 152-321) μM; 176(IQR, 112-226) μM, respectively; P < 0.0001). In multivariate logistic regression analysis, glutamate was an independent predictor of functional outcome, with an adjusted OR of 6.99 (95 % confidence interval [CI] 2.21-21.23). Receiver operating characteristics to predict functional outcome demonstrated areas under the curve of glutamate of 0.821 (95 % CI 0.733-0.878; P < 0.0001) and combined model (glutamate and NIHSS) improved the NIHSS score alone. Plasma glutamate levels can be seen as an independent short-term prognostic marker of functional outcome in Chinese patients with acute ischemic stroke even after correcting for possible confounding factors.
BackgroundPresent study evaluates the neuroprotective effect of β-elemene alone and in combination with hyperbaric oxygen (HO) in traumatic brain injury (TBI).MethodologyTBI was induced by dropping a weight from a specific height. All the animals were separated in to five groups (n=20) like control group; TBI group; β-elemene treated group which receives β-elemene (100 mg/kg, i.p.) half an hour after the injury; HO group which receives hyperbaric oxygen therapy and β-elemene + HO group which receives β-elemene (100 mg/kg, i.p.) half an hour after the injury and hyperbaric oxygen therapy. Neurological function was assessed to evaluate the effect of β-elemene in TBI rats. Thereafter level of inflammatory cytokines and expression of protein of inflammatory pathway was assessed in the brain tissues of TBI rats. In addition TUNEL assay was also done for the determination apoptosis in neuronal cells.ResultData of the report reveals that β-elemene alone and in combination with hyperbaric oxygen (HO) significantly decreases the neurological score Compared to TBI group. Moreover level of inflammatory cytokines and expression of LTR4 and casepase 3 significantly decrease and increase in the expression of IkB in β-elemene alone and in combination with hyperbaric oxygen (HO) treated group compared to TBI group. Data of TUNEL assay also reveals that β-elemene treated group shows significant decrease in the TUNEL positive cells and apoptosis index compared to TBI group.ConclusionThus present study concludes the neuroprotective effect of β-elemene against TBI and it shows synergistic effect on TBI when treated with HO.
ABSTRACT. We investigated the effects of hyperbaric oxygen treatment on the Nrf2 signaling pathway in secondary injury following traumatic brain injury, using a rat model. An improved Feeney freefall method was used to establish the rat traumatic brain injury model. Sixty rats were randomly divided into three groups: a sham surgery group, a traumatic brain injury group, and a group receiving hyperbaric oxygen treatment after traumatic brain injury. Neurological function scores were assessed at 12 and 24 h after injury. The expression levels of Nrf2, heme oxygenase 1 (HO-1), and quinine oxidoreductase 1 (NQO-1) in the cortex surrounding the brain lesion were detected by western blotting 24 h after the injury. Additionally, the TUNEL method was used to detect apoptosis of nerve cells 24 h after traumatic injury and Nissl staining was used to detect the number of whole neurons. Hyperbaric oxygen treatment significantly increased the expression of nuclear Nrf2 protein (P < 0.05), HO-1, and NQO-1 in the brain tissues surrounding the lesion after a traumatic brain injury (P < 0.05) and also significantly reduced the number of apoptotic and injured nerve cells. The neurological function scores also improved with hyperbaric oxygen treatment (P < 0.05). Therefore, hyperbaric oxygen has a neuroprotective role in traumatic brain injury, which is mediated by up-regulation of the Nrf2 signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.