A high fat diet significantly impacted gut microbiota composition and lipid metabolism in human flora-associated mice, which were largely ameliorated by tea polyphenol (TP). Therefore, TPs may be effectively used in controlling or treating obesity, hyperlipidemia and other related metabolic diseases.
There is an increasing interest in the effect of dietary polyphenols on the intestinal microbiota and the possible associations between this effect and the development of some cardiovascular diseases, such as atherosclerosis (AS). However, limited information is available on how these polyphenols affect the gut microbiota and AS development. This study was designed to evaluate the modulation of dietary tea polyphenols (TPs) on intestinal Bifidobacteria (IB) and its correlation with AS development in apolipoprotein E-deficient (ApoE−/−) mice. Fifty C57BL/6 ApoE−/− mice were randomized into one of the five treatment groups (n = 10/group): control group fed normal diet (CK); a group fed a high-fat diet (HFD); and the other three groups fed the same HFD supplemented with TPs in drinking water for 16 weeks. The total cholesterol and low-density lipoprotein cholesterol (LDL-C) were decreased significantly (P < 0.05) after TP interference. In addition, the TP diet also decreased the plaque area/lumen area (PA/LA) ratios (P < 0.01) in the TP diet group. Interestingly, copies of IB in the gut of ApoE−/− mice were notably increased with TP interference. This increase was dose dependent (P < 0.01) and negatively correlated with the PA/LA ratio (P < 0.05). We conclude that TPs could promote the proliferation of the IB, which is partially responsible for the reduction of AS plaque induced by HFD.
Xiaoqu is a traditional fermentation starter that is used for Chinese liquor production. Although microorganisms in the starters are closely associated with the quality and flavor of liquor, knowledge of the microbiota in xiaoqu is still far from complete, let alone the starters produced by new processes. Here, Illumina MiSeq high-throughput sequencing was applied to study bacterial composition in three types of xiaoqu used in Cantonese soybean-flavor (Chi-flavor) liquor, namely two traditional starters (Jiu Bing and Bing Wan) and a Round-Koji-maker starter (San qu) produced by the automatic starter-making disk machine. The results showed bacterial diversity in traditional starters was similar and higher than that in the Round-Koji-maker starter. Lactobacillus and Pediococcus were the dominant genera in all starters, while other different dominant genera also existed in different starters, which were Weissella, Acetobacter, and Gluconobacter for Jiu Bing, Weissella for Bing Wan, and Bacillus, Acetobacter, Acinetobacter and Klebsiella for San qu, respectively. Meanwhile, Cytophagaceae, one particular microbial family, and some pathogens including Klebsiella, Cronobacter, and Enterobacter were also found in San qu, indicating the automatic starter-making disk machine should be ameliorated before applied into industrial production. These results enriched our knowledge on xiaoqu-related microorganisms and might be helpful in industrial Chi-flavor liquor production and the development of fermentation technology.
Human intestinal microbiota plays a crucial role in the conversion of isoflavones into equol. Usually, human microbiota-associated (HMA) animal models are used, since it is difficult to establish the mechanism and causal relationship between equol and microbiota in human studies. Currently, several groups have successfully established HMA animal models that produce equol through germ-free mice or rats; however, the HMA model of producing equol through pseudo germ-free mice has not been established. The objective of this study is to establish an HMA mice model for equol production through pseudo germ-free mice, mimicking the gut microbiota of an adult human equol producer. First, a higher female equol producer was screened as a donor from 15 volunteers. Then, mice were exposed to vancomycin, neomycin sulfate, metronidazole, and ampicillin for 3 weeks to obtain pseudo germ-free mice. Finally, pseudo germ-free mice were inoculated with fecal microbiota of the equol producer for 3 weeks to establish HMA mice of producing equol. The results showed that (i) the ability to produce equol was partially transferred from the donor to the HMA mice. (ii) Most of the original intestinal microbiota of mice were eliminated after broad-spectrum antibiotic administration. (iii) The taxonomy data from HMA mice revealed similar taxa to the donor sample, and the species richness returned to the level close to the donor. (iv) The family Coriobacteriaceae and genera Collinsella were successfully transferred from the donor to HMA mice. In conclusion, the HMA mice model for equol production, based on pseudo germ-free mice, can replace the model established by germ-free mice. The model also provides a basis for studying microbiota during the conversion from isoflavones into equol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.