The dynamical model of an omni-directional mobile robot is bulit based on the Newtonian mechanics. Correspondingly, a backstepping-based controller is then proposed with proven global stability by selecting a Lyapunov function and introducing a virtual control input for the built dynamical model. Simulation results show the effectiveness of the proposed controller.
The cooperative output regulation problem for a class of nonlinear uncertain multi-agent systems is considered. Based on the distributed internal model, the problem is firstly transformed into a global stabilization problem of the augmented system. Then, using the backstepping design method, a distributed control law with its stability analysis is proposed to solve the global stabilization problem of the augmented system. Finally, a numerical simulation is made to show the efficacy of the analytic results.
Energy efficiency is considered as a challenge in Wireless Sense Networks because of the limited energy. In this paper a novel grid-clustering sensing algorithm, the SCA (the sensing clustering algorithm) is proposed in order to minimize energy expenditure and maximize network lifetime. Different to all conventional methods, the proposed algorithm clusters nodes depending on the sensing ability, and forms a comprehensive covered and fully connected network. Both of the theoretical analyses and the simulation indicate that the SCA reduces the energy consumption effectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.