This paper mainly focuses on the output practical tracking controller design for a class of complex stochastic nonlinear systems with unknown control coefficients. In the existing research results, most of the complex systems are controlled in a certain direction, which leads to the disconnection between theoretical results and practical applications. The authors introduce unknown control coefficients, and the values of the upper and lower bounds of the control coefficients are generalized by constants to allow arbitrary values to be arbitrarily large or arbitrarily small. In the control design program, the design problem of the controller is transformed into a parameter construction problem by introducing appropriate coordinate transformation. Moreover, we construct an output feedback practical tracking controller based on the dynamic and static phase combined by Ito stochastic differential theory and selection of appropriate design parameters, ensuring that the system tracking error can be made arbitrarily small after some large enough time. Finally, a simulation example is provided to illustrate the efficiency of the theoretical results.
The output feedback controller is designed for a class of stochastic nonlinear systems that satisfy uncertain function growth conditions for the first time. The multivariate function growth condition has greatly relaxed the restrictions on the drift and diffusion terms in the original stochastic nonlinear system. Here, we cleverly handle the problem of uncertain functions in the scaling process through the function maxima theory so that the Ito differential system can achieve output stabilization through Lyapunov function design and the solution of stochastic nonlinear system objects satisfies the existence of uniqueness, ensuring that the system is globally asymptotically stable in the sense of probability. Furthermore, it is concluded that the system is inversely optimally stable in the sense of probability. Finally, we apply the theoretical results to the practical subsea intelligent electroexecution robot control system and obtain good results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.