Tcf1 and Lef1 have versatile functions in regulating T cell development and differentiation, but intrinsic requirements for these factors in regulatory T (T reg) cells remain to be unequivocally defined. Specific ablation of Tcf1 and Lef1 in T reg cells resulted in spontaneous multi-organ autoimmunity that became more evident with age. Tcf1/Lef1-deficient T regs showed reduced protection against experimentally induced colitis, indicative of diminished immuno-suppressive capacity. Transcriptomic analysis revealed that Tcf1 and Lef1 were responsible for positive regulation of a subset of T reg–overrepresented signature genes such as Ikzf4 and Izumo1r. Unexpectedly, Tcf1 and Lef1 were necessary for restraining expression of cytotoxic CD8+ effector T cell–associated genes in T reg cells, including Prdm1 and Ifng. Tcf1 ChIP-seq revealed substantial overlap between Tcf1 and Foxp3 binding peaks in the T reg cell genome, with Tcf1-Foxp3 cooccupancy observed at key T reg signature and cytotoxic effector genes. Our data collectively indicate that Tcf1 and Lef1 are critical for sustaining T reg suppressive functions and preventing loss of self-tolerance.
Abdominal aortic aneurysm (AAA), a deadly vascular disease in human, is a chronic degenerative process of the abdominal aorta. In this process, inflammatory responses and immune system work efficiently by inflammatory cell attraction, proinflammatory factor secretion and subsequently MMP upregulation. Previous studies have demonstrated various inflammatory cell types in AAA of human and animals. The majority of cells, such as macrophages, CD4+ T cells, and B cells, play an important role in the diseased aortic wall through phenotypic modulation. Furthermore, immunoglobulins also greatly affect the functions and differentiation of immune cells in AAA. Recent evidence suggests that innate immune system, especially Toll-like receptors, chemokine receptors, and complements are involved in the progression of AAAs. We discussed the innate immune system, inflammatory cells, immunoglobulins, immune-mediated mechanisms, and key cytokines in the pathogenesis of AAA and particularly emphasis on a further trend and application of these interventions. This current understanding may offer new insights into the role of inflammation and immune response in AAA.
Hominoid-specific brain structures are of particular importance in understanding the evolution of human brain structure and function, as they are absent in mammals that are widely studied in the extended neuroscience field. Recent research indicates that the human fusiform gyrus (FG), which is a hominoid-specific structure critical for complex object recognition, contains a tertiary, longitudinal sulcus (mid-fusiform sulcus, MFS) that bisects the FG into lateral and medial parallel gyri. The MFS is a functional and architectonic landmark in the human brain. Here, we tested if the MFS is specific to the human FG or if the MFS is also identifiable in other hominoids. Using magnetic resonance imaging and cortical surface reconstructions in 30 chimpanzees and 30 humans, we show that the MFS is also present in chimpanzees. The MFS is relatively deeper and cortically thinner in chimpanzees compared to humans. Additional histological analyses reveal that the MFS is not only present in humans and chimpanzees, but also in bonobos, gorillas, orangutans, and gibbons. Taken together, these results reveal that the MFS is a sulcal landmark that is shared between humans and other hominoids. These results require a reconsideration of the sulcal patterning in ventral temporal cortex across hominoids, as well as revise the compensation theory of cortical folding.
The recently publicly released Human Connectome Project (HCP) grayordinate-based fMRI data not only has high spatial and temporal resolution, but also offers group-corresponding fMRI signals across a large population for the first time in the brain imaging field, thus significantly facilitating mapping the functional brain architecture with much higher resolution and in a group-wise fashion. In this paper, we adopt the HCP grayordinate task-based fMRI (tfMRI) data to systematically identify and characterize task-based heterogeneous functional regions (THFRs) on cortical surface, i.e., the regions that are activated during multiple tasks conditions and contribute to multiple task-evoked systems during a specific task performance, and to assess the spatial patterns of identified THFRs on cortical gyri and sulci by applying a computational framework of sparse representations of grayordinate brain tfMRI signals. Experimental results demonstrate that both consistent task-evoked networks and intrinsic connectivity networks across all subjects and tasks in HCP grayordinate data are effectively and robustly reconstructed via the proposed sparse representation framework. Moreover, it is found that there are relatively consistent THFRs locating at bilateral parietal lobe, frontal lobe, and visual association cortices across all subjects and tasks. Particularly, those identified THFRs locate significantly more on gyral regions than on sulcal regions. These results based on sparse representation of HCP grayordinate data reveal novel functional architecture of cortical gyri and sulci, and might provide a foundation to better understand functional mechanisms of the human cerebral cortex in the future.
The term “cerebral torque” refers to opposing right–left asymmetries of frontal and parieto-occipital regions. These are assumed to derive from a lateralized gradient of embryological development of the human brain. To establish the timing of its evolution, we computed and compared the torque, in terms of three principal features, namely petalia, shift, and bending of the inter-hemispheric fissure as well as the inter-hemispheric asymmetry of brain length, height and width for in vivo Magnetic Resonance Imaging (MRI) scans of 91 human and 78 chimpanzee brains. We found that the cerebral torque is specific to the human brain and that its magnitude is independent of brain size and that it comprises features that are inter-related. These findings are consistent with the concept that a “punctuational” genetic change of relatively large effect introduced lateralization in the hominid lineage. The existence of the cerebral torque remains an unsolved mystery and the present study provides further support for this most prominent structural brain asymmetry being specific to the human brain. Establishing the genetic origins of the torque may, therefore, have relevance for a better understanding on human evolution, the organisation of the human brain, and, perhaps, also aspects of the neural basis of language.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.