MicroRNAs (miRNAs) play key roles in plant reproduction. However, knowledge on microRNAome analysis in autotetraploid rice is rather limited. Here, high-throughput sequencing technology was employed to analyze miRNAomes during pollen development in diploid and polyploid rice. A total of 172 differentially expressed miRNAs (DEM) were detected in autotetraploid rice compared to its diploid counterpart, and 57 miRNAs were specifically expressed in autotetraploid rice. Of the 172 DEM, 115 and 61 miRNAs exhibited up- and down-regulation, respectively. Gene Ontology analysis on the targets of up-regulated DEM showed that they were enriched in transport and membrane in pre-meiotic interphase, reproduction in meiosis, and nucleotide binding in single microspore stage. osa-miR5788 and osa-miR1432-5p_R+1 were up-regulated in meiosis and their targets revealed interaction with the meiosis-related genes, suggesting that they may involve in the genes regulation associated with the chromosome behavior. Abundant 24 nt siRNAs associated with transposable elements were found in autotetraploid rice during pollen development; however, they significantly declined in diploid rice, suggesting that 24 nt siRNAs may play a role in pollen development. These findings provide a foundation for understanding the effect of polyploidy on small RNA expression patterns during pollen development that cause pollen sterility in autotetraploid rice.
BackgroundPartial pollen and embryo sac sterilities are the two main reasons for low fertility in autotetraploid rice. Our previous study revealed that small RNAs changes may associate with pollen fertility in autotetraploid rice. However, knowledge on comparative analysis between the development of pollen and embryo sac by small RNAs in autotetraploid rice is still unknown. In the present study, WE-CLSM (whole-mount eosin B-staining confocal laser scanning microscopy) and high-throughput sequencing technology was employed to examine the cytological variations and to analyze small RNAs changes during pollen and embryo sac development in autotetraploid rice compared with its diploid counterpart.ResultsA total of 321 and 368 differentially expressed miRNAs (DEM) were detected during pollen and embryo sac development in autotetraploid rice, respectively. Gene Ontology enrichment analysis on the targets of DEM associated with embryo sac and pollen development revealed 30 prominent functional gene classes, such as cell differentiation and signal transduction during embryo sac development, while only 7 prominent functional gene classes, such as flower development and transcription factor activity, were detected during pollen development in autotetraploid rice. The expression levels of 39 DEM, which revealed interaction with meiosis-related genes, showed opposite expression patterns during pollen and embryo sac development. Of these DEM, osa-miR1436_L + 3_1ss5CT and osa-miR167h-3p were associated with the female meiosis, while osa-miR159a.1 and osa-MIR159a-p5 were related with the male meiosis. 21 nt-phasiRNAs were detected during both pollen and embryo sac development, while 24 nt-phasiRNAs were found only in pollen development, which displayed down-regulation in autotetraploid compared to diploid rice and their spatial-temporal expression patterns were similar to osa-miR2275d. 24 nt TEs-siRNAs were found to be up-regulated in embryo sac but down-regulated in pollen development.ConclusionThe above results not only provide the small RNAs changes during four landmark stages of pollen and embryo sac development in autotetraploid rice but also have identified specifically expressed miRNAs, especially meiosis-related miRNAs, pollen-specific-24 nt-phasiRNAs and TEs-siRNAs in autotetraploid rice. Together, these findings provide a foundation for understanding the effect of polyploidy on small RNAs expression patterns during pollen and embryo sac development that may lead to different abnormalities in autotetraploid rice.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-017-3526-8) contains supplementary material, which is available to authorized users.
Inner ear cochlear spiral ganglion neurons (SGNs) transmit sound information to the brainstem. Recent single cell RNA-Seq studies have revealed heterogeneities within SGNs. Nonetheless, much remains unknown about the transcriptome of SGNs, especially which genes are specifically expressed in SGNs. To address these questions, we needed a deeper and broader gene coverage than that in previous studies. We performed bulk RNA-Seq on mouse SGNs at five ages, and on two reference cell types (hair cells and glia). Their transcriptome comparison identified genes previously unknown to be specifically expressed in SGNs. To validate our dataset and provide useful genetic tools for this research field, we generated two knockin mouse strains: Scrt2-P2A-tdTomato and Celf4-3xHA-P2A-iCreER-T2A-EGFP. Our comprehensive analysis confirmed the SGN-selective expression of the candidate genes, testifying to the quality of our transcriptome data. These two mouse strains can be used to temporally label SGNs or to sort them.
Production of maternal haploids using a conspecific haploid inducer is routine and highly efficient in maize. However, the underlying mechanism of haploid induction (HI) is unclear. We develop a method to isolate three nuclei from a pollen grain and four microspores from a tetrad for whole-genome sequencing. A high rate of aneuploidy is observed at the three-nucleus stage (6/22 pollens) rather than at the tetrad stage (1/72 microspores) in one HI line CAU5. Frequent aneuploidy is also observed in another two inducer lines, but not in two regular lines, which implies that HI may be associated with pollen aneuploidy. We further sequence the individual embryos and endosperms of 88 maize kernels crossing between regular and inducer lines. Genome-wide elimination of the CAU5-derived chromosome is identified in eight of 81 embryos. Together, these results suggest that continuous chromosome fragmentation occurring post meiosis in the gametophyte may cause haploidy of the embryo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.