Noise, partial volume (PV) effect and image-intensity inhomogeneity render a challenging task for segmentation of brain magnetic resonance (MR) images. Most of the current MR image segmentation methods focus on only one or two of the effects listed above. The objective of this paper is to propose a unified framework, based on the maximum a posteriori probability principle, by taking all these effects into account simultaneously in order to improve image segmentation performance. Instead of labeling each image voxel with a unique tissue type, the percentage of each voxel belonging to different tissues, which we call a mixture, is considered to address the PV effect. A Markov random field model is used to describe the noise effect by considering the nearby spatial information of the tissue mixture. The inhomogeneity effect is modeled as a bias field characterized by a zero mean Gaussian prior probability. The well-known fuzzy C-mean model is extended to define the likelihood function of the observed image. This framework reduces theoretically, under some assumptions, to the adaptive fuzzy C-mean (AFCM) algorithm proposed by Pham and Prince. Digital phantom and real clinical MR images were used to test the proposed framework. Improved performance over the AFCM algorithm was observed in a clinical environment where the inhomogeneity, noise level and PV effect are commonly encountered.
<p>Speech emotion recognition is an important issue in the development of human-computer interactions. In this paper a series of novel robust features for speech emotion recognition is proposed. Those features, which derived from the Hilbert-Huang transform (HHT) and Teager energy operator (TEO), have the characteristics of multi-resolution, self-adaptability and high precision of distinguish ability. In the experiments, seven status of emotion were selected to be recognized and the highest 85% recognition rate was achieved within the classification accuracy of boredom reached up to 100%. The numerical results indicate that the proposed features are robust and the performance of speech emotion recognition is improved substantially.<strong></strong></p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.