Object detection in remote sensing images relies on a large amount of labeled data for training. The growing new categories and class imbalance render exhaustive annotation nonscalable. Few-shot object detection (FSOD) tackles this issue by meta-learning on seen base classes and then fine-tuning on novel classes with few labeled samples. However, the object's scale and orientation variations are particularly large in remote sensing images, thus posing challenges to existing few-shot object detection methods. To tackle these challenges, we first propose to integrate a feature pyramid network and use prototype features to highlight query features to improve upon existing FSOD methods. We refer to the modified FSOD as a Strong Baseline which is demonstrated to perform significantly better than the original baselines. To improve the robustness of orientation variation, we further propose a transformation-invariant network (TINet) to allow the network to be invariant to geometric transformations. Extensive experiments on three widely used remote sensing object detection datasets, i.e., NWPU VHR-10.v2, DIOR, and HRRSD demonstrated the effectiveness of the proposed method. Finally, we reproduced multiple FSOD methods for remote sensing images to create an extensive benchmark for follow-up works.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.