The nuclear receptor retinoid acid receptor-related orphan receptor γt (RORγt) is a master regulator of the Th17/IL-17 pathway that plays crucial roles in the pathogenesis of autoimmunity. RORγt has recently emerged as a highly promising target for treatment of a number of autoimmune diseases. Through high-throughput screening, we previously identified several classes of inverse agonists for RORγt. Here, we report the crystal structures for the ligand-binding domain of RORγt in both apo and ligand-bound states. We show that apo RORγt adopts an active conformation capable of recruiting coactivator peptides and present a detailed analysis of the structural determinants that stabilize helix 12 (H12) of RORγt in the active state in the absence of a ligand. The structures of ligand-bound RORγt reveal that binding of the inverse agonists disrupts critical interactions that stabilize H12. This destabilizing effect is supported by calculations and experimentally by a normalized crystallographic B-factor analysis. Of note, the H12 destabilization in the active state shifts the conformational equilibrium of RORγt toward an inactive state, which underlies the molecular mechanism of action for the inverse agonists reported here. Our findings highlight that nuclear receptor structure and function are dictated by a dynamic conformational equilibrium and that subtle changes in ligand structures can shift this equilibrium in opposite directions, leading to a functional switch from agonists to inverse agonists.
It was previously confirmed that hydrogen sulfide (H2S) has a neuroprotective effect, preventing homocysteine‑induced neurotoxicity. However, the exact molecular mechanisms underlying this protective effect remain to be fully elucidated. Endoplasmic reticulum (ER) stress contributes to homocysteine‑induced neurotoxicity. Silent mating type information regulator 2 homolog 1 (SIRT‑1) can attenuate ER stress, exerting its neuroprotective effect. Therefore, the present study aimed to investigate whether H2S protects PC12 cells against homocysteine‑induced ER stress and whether SIRT‑1 mediates this protective effect of H2S. Western blotting was used to detect the expression of SIRT‑1, glucose‑regulated protein 78 (GRP78), and cleaved caspase‑12 in PC12 cells. It was observed that sodium hydrosulfide (NaHS), an exogenous H2S donor, significantly attenuated the homocysteine‑induced ER stress responses, including increases in the protein expression levels of GRP78 and cleaved caspase‑12. Simultaneously, NaHS upregulated the expression of SIRT‑1 and reversed the homocysteine‑induced downregulation of SIRT‑1 in PC12 cells. Sirtinol, a specific inhibitor of SIRT‑1, eliminated the protective effects of H2S in homocysteine‑induced ER stress. These data indicated that H2S prevented homocysteine‑induced ER stress via enhancing the expression of SIRT‑1. These findings offer novel insight into the protective mechanisms of H2S against homocysteine‑induced neurotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.