Rigid polyurethane foam (RPUF) is one of the best thermal insulation materials available, but its flammability makes it a potential fire hazard. Due to its porous nature, the large specific surface area is the key factor for easy ignition and rapid fires spread when exposed to heat sources. The burning process of RPUF mainly takes place on the surface. Therefore, if a flame-retardant coating can be formed on the surface of RPUF, it can effectively reduce or stop the flame propagation on the surface of RPUF, further improving the fire safety. Compared with the bulk flame retardant of RPUF, the flame-retardant coating on its surface has a higher efficiency in improving fire safety. This paper aims to review the preparations, properties, and working mechanisms of RPUF surface flame-retardant systems. Flame-retardant coatings are divided into non-intumescent flame-retardant coatings (NIFRCs) and intumescent flame-retardant coatings (IFRCs), depending on whether the flame-retardant coating expands when heated. After discussion, the development trends for surface flame-retardant systems are considered to be high-performance, biological, biomimetic, multifunctional flame-retardant coatings.
To meet the growing needs of public safety and sustainable development, it is highly desirable to develop flame-retardant polymer materials using a facile and low-cost method. Although conventional solution chemical synthesis has proven to be an efficient way of developing flame retardants, it often requires organic solvents and a complicated separation process. In this review, we summarize the progress made in utilizing simple ball milling (an important type of mechanochemical approach) to fabricate flame retardants and flame-retardant polymer composites. To elaborate, we first present a basic introduction to ball milling, and its crushing, exfoliating, modifying, and reacting actions, as used in the development of high-performance flame retardants. Then, we report the mixing action of ball milling, as used in the preparation of flame-retardant polymer composites, especially in the formation of multifunctional segregated structures. Hopefully, this review will provide a reference for the study of developing flame-retardant polymer materials in a facile and feasible way.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.