Recently, machine learning is widely used in applications and cloud services. And as the emerging field of machine learning, deep learning shows excellent ability in solving complex learning problems. To give users better experience, high performance implementations of deep learning applications seem very important. As a common means to accelerate algorithms, FPGA has high performance, low power consumption, small size and other characteristics. So we use FPGA to design a deep learning accelerator, the accelerator focuses on the implementation of the prediction process, data access optimization and pipeline structure. Compared with Core 2 CPU 2.3GHz, our accelerator can achieve promising result.
In most optical imaging systems and applications, images with high resolution (HR) are desired and often required. However, charged coupled device (CCD) and complementary metal-oxide semiconductor (CMOS) sensors may be not suitable for some imaging applications due to the current resolution level and consumer price. To transcend these limitations, in this paper, we present a novel single image super-resolution method. To simultaneously improve the resolution and perceptual image quality, we present a practical solution that combines manifold learning and sparse representation theory. The main contributions of this paper are twofold. First, a mapping function from low-resolution (LR) patches to HR patches will be learned by a local regression algorithm called sparse support regression, which can be constructed from the support bases of LR-HR dictionary. Second, we propose to preserve the geometrical structure of image patch dictionary, which is critical for reducing artifacts and obtaining better visual quality. Experimental results demonstrate that the proposed method produces high-quality results, both quantitatively and perceptually.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.