A large and rapidly increasing body of evidence indicates that microglia-neuron signaling is essential for chronic pain hypersensitivity. Here we show using multiple approaches that microglia are not required for mechanical pain hypersensitivity in female mice; female mice achieve similar levels of pain hypersensitivity using adaptive immune cells, likely T-lymphocytes. This sexual dimorphism suggests that male mice cannot be used as proxies for females in pain research.
Neuropathic pain resulting from damage to or dysfunction of peripheral nerves is not well understood and difficult to treat. Although CNS hyperexcitability is a critical component, recent findings challenge the neuron-centric view of neuropathic pain etiology and pathology. Indeed, glial cells were shown to play an active role in the initiation and maintenance of pain hypersensitivity. However, the origins of these cells and the triggers that induce their activation have yet to be elucidated. Here we show that, after peripheral nerve injury induced by a partial ligation on the sciatic nerve, in addition to activation of microglia resident to the CNS, hematogenous macrophage/monocyte infiltrate the spinal cord, proliferate, and differentiate into microglia. Signaling from chemokine monocyte chemoattractant protein-1 (MCP-1, CCL2) to its receptor CCR2 is critical in the spinal microglial activation. Indeed, intrathecal injection of MCP-1 caused activation of microglia in wild-type but not in CCR2-deficient mice. Furthermore, treatment with an MCP-1 neutralizing antibody prevented bone marrow-derived microglia (BMDM) infiltration into the spinal cord after nerve injury. In addition, using selective knock-out of CCR2 in resident microglia or BMDM, we found that, although total CCR2 knock-out mice did not develop microglial activation or mechanical allodynia, CCR2 expression in either resident microglia or BMDM is sufficient for the development of mechanical allodynia. Thus, to effectively relieve neuropathic pain, both CNS resident microglia and blood-borne macrophages need to be targeted. These findings also open the door for a novel therapeutic strategy: to take advantage of the natural ability of bone marrow-derived cells to infiltrate selectively affected CNS regions by using these cells as vehicle for targeted drug delivery to inhibit hypersensitivity and chronic pain.
Peripheral nerve lesion triggers alterations in the spinal microenvironment that contribute to the pathogenesis of neuropathic pain. While neurons and glia have been implicated in these functional changes, it remains largely underexplored whether the blood-spinal cord barrier (BSCB) is also involved. The BSCB is an important component in the CNS homeostasis, and compromised BSCB has been associated with different pathologies affecting the spinal cord. Here, we demonstrated that a remote injury on the peripheral nerve in rats triggered a leakage of the BSCB, which was independent of spinal microglial activation. The increase of BSCB permeability to different size tracers, such as Evans Blue and sodium fluorescein, was restricted to the lumbar spinal cord and prominent for at least 4 weeks after injury. The spinal inflammatory reaction triggered by nerve injury was a key player in modulating BSCB permeability. We identified MCP-1 as an endogenous trigger for the BSCB leakage. BSCB permeability can also be impaired by circulating IL-1. In contrast, antiinflammatory cytokines TGF-1 and IL-10 were able to shut down the openings of the BSCB following nerve injury. Peripheral nerve injury caused a decrease in tight junction and caveolae-associated proteins. Interestingly, ZO-1 and occludin, but not caveolin-1, were rescued by TGF-1. Furthermore, our data provide direct evidence that disrupted BSCB following nerve injury contributed to the influx of inflammatory mediators and the recruitment of spinal blood borne monocytes/macrophages, which played a major role in the development of neuropathic pain. These findings highlight the importance of inflammation in BSCB integrity and in spinal cord homeostasis.
Glial activation is a typical response of the central nervous system to nerve injury. In the current investigation, we characterized the temporal and spatial pattern of glial proliferation, one of the most conspicuous features of glial activation, in relation to nerve injury-induced neuropathic pain. Using bromodeoxyuridine (BrdU) as a mitotic marker, we analyzed cell proliferation in the spinal cord, identified the phenotype of dividing cells, traced their fate, and correlated these phenomena with behavioural assays of the neuropathic pain syndrome. Our results demonstrated that peripheral nerve injury induced an early and transient cell proliferation, on the spinal cord ipsilateral to the nerve lesion which peaked at day 3 post-surgery. The majority of the proliferating cells were Iba-1(+) microglia, together with some NG2(+) oligodendrocyte progenitors, and GFAP(+) astrocytes. These newly generated cells continued to divide over time with the response peaking at day 14 post-injury. Microglia were always the predominant phenotype which made up over 60% of activated microglia derived from this newly generated cell population. There was a close temporal correlation between microglial proliferation in the spinal cord dorsal horn and the abnormal pain responses, suggesting a contribution of the new microglia to the genesis of the neuropathic pain symptoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.