Hypohydration exceeding 2% body mass can impair endurance capacity. It is postulated that the brain could be perturbed by hypohydration, leading to impaired motor performance. We investigated the neural effects of hypohydration with magnetic resonance imaging (MRI). Ten men were dehydrated to approximately −3% body mass by running on a treadmill at 65% maximal oxygen consumption (V̇o2max) before drinking to replace either 100% [euhydration (EU)] or 0% [hypohydration (HH)] of fluid losses. MRI was performed before start of trial (baseline) and after rehydration phase (post) to evaluate brain structure, cerebral perfusion, and functional activity. Endurance capacity assessed with a time-to-exhaustion run at 75% V̇o2max was reduced with hypohydration (EU: 45.2 ± 9.3 min, HH: 38.4 ± 10.7 min; P = 0.033). Mean heart rates were comparable between trials (EU: 162 ± 5 beats/min, HH: 162 ± 4 beats/min; P = 0.605), but the rate of rise in rectal temperature was higher in HH trials (EU: 0.06 ± 0.01°C/min, HH: 0.07 ± 0.02°C/min; P < 0.01). In HH trials, a reduction in total brain volume (EU: +0.7 ± 0.6%, HH: −0.7 ± 0.9%) with expansion of ventricles (EU: −2.7 ± 1.6%, HH: +3.7 ± 3.3%) was observed, and vice versa in EU trials. Global and regional cerebral perfusion remained unchanged between conditions. Functional activation in the primary motor cortex in left hemisphere during a plantar-flexion task was similar between conditions (EU: +0.10 ± 1.30%, HH: −0.11 ± 0.31%; P = 0.637). Our findings demonstrate that with exertional hypohydration, brain volumes were altered but the motor-related functional activity was unperturbed. NEW & NOTEWORTHY Dehydration occurs rapidly during prolonged or intensive physical activity, leading to hypohydration if fluid replenishment is insufficient to replace sweat losses. Altered hydration status poses an osmotic challenge for the brain, leading to transient fluctuations in brain tissue and ventricle volumes. Therefore, the amount of fluid ingestion during exercise plays a critical role in preserving the integrity of brain architecture. These structural changes, however, did not translate directly to motor functional deficits in a simple motor task.
This study aimed to sequence and characterize two pro-coagulant genes, coagulation factor II ( f2) and fibrinogen gamma chain ( fgg), from the liver of the African lungfish Protopterus annectens, and to determine their hepatic mRNA expression levels during three phases of aestivation. The protein abundance of F2 and Fgg in the liver and plasma was determined by immunoblotting. The results indicated that F2 and Fgg of P. annectens were phylogenetically closer to those of amphibians than those of teleosts. Three days of aestivation resulted in an up-regulation in the hepatic fgg mRNA expression level, while 6 days of aestivation led to a significant increase (3-fold) in the protein abundance of Fgg in the plasma. Hence, there could be an increase in the blood-clotting ability in P. annectens during the induction phase of aestivation. By contrast, the blood-clotting ability in P. annectens might be reduced in response to decreased blood flow and increased possibility of thrombosis during the maintenance phase of aestivation, as 6 months of aestivation led to significant decreases in mRNA expression levels of f2 and fgg in the liver. There could also be a decrease in the export of F2 and Fgg from the liver to the plasma so as to avert thrombosis. Three to 6 days after arousal from 6 months of aestivation, the protein abundance of F2 and Fgg recovered partially in the plasma of P. annectens; a complete recovery of the transcription and translation of f2/F2 in the liver might occur only after refeeding.
The central nervous system, specifically the brain, is implicated in the development of exertional fatigue under a hot environment. Diverse neuroimaging techniques have been used to visualize the brain activity during or after exercise. Notably, the use of magnetic resonance imaging (MRI) has become prevalent due to its excellent spatial resolution and versatility. This review evaluates the significance and limitations of various brain MRI techniques in exercise studies-brain volumetric analysis, functional MRI, functional connectivity MRI, and arterial spin labeling. The review aims to provide a summary on the neural basis of exertional fatigue and proposes future directions for brain MRI studies. A systematic literature search was performed where a total of thirty-seven brain MRI studies associated with exercise, fatigue, or related physiological factors were reviewed. The findings suggest that with moderate dehydration, there is a decrease in total brain volume accompanied with expansion of ventricular volume. With exercise fatigue, there is increased activation of sensorimotor and cognitive brain areas, increased thalamo-insular activation and decreased interhemispheric connectivity in motor cortex. Under passive hyperthermia, there are regional changes in cerebral perfusion, a reduction in local connectivity in functional brain networks and an impairment to executive function. Current literature suggests that the brain structure and function are influenced by exercise, fatigue, and related physiological perturbations. However, there is still a dearth of knowledge and it is hoped that through understanding of MRI advantages and limitations, future studies will shed light on the central origin of exertional fatigue in the heat.
Objectives: The ACSM recommends drinking to avoid loss of body mass >2% during exercise to avert compromised performance. Our study aimed to assess the level of dehydration in elite runners following a city marathon in a tropical environment. Design: Prospective cohort design. Methods: Twelve elite runners (6 males, 6 females; age 24-41 y) had body mass measured to the nearest 0.01 kg in their race attire immediately before and after the 2017 Standard Chartered Singapore Marathon 2017. Body mass change was corrected for respiratory water loss, gas exchange, and sweat retained in clothing, and expressed as % of pre-race mass (i.e. % dehydration). Results: Data are expressed as means ± SD (range). Dry bulb temperature and humidity were 27.9 ± 0.1 • C (27.4-28.3 • C) and 79 ± 2% (73-82%). Finish time was 155 ± 10 min (143−172 min). Male runners finishing positions ranged from 2-12 out of 7627 finishers, whilst female runners placed 1-8 out of 1754 finishers. Body mass change (loss) and % dehydration for all runners were 2.5 ± 0.5 kg (1.8-3.5 kg) and 4.6 ± 0.9% (3.6-6.8%). Male runners experienced body mass loss of 2.8 ± 0.5 kg and 4.9 ± 1.2% while females experienced body mass loss of 2.1 ± 0.2 kg and 4.3 ± 0.6%. Conclusions: Despite experiencing dehydration (4.6% body mass loss) two-fold higher than current fluid replacement guidelines recommend (≤2%), elite male and female runners performed successfully and without medical complication in a hot weather marathon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.