To search for endogenous estrogens that may have preferential binding affinity for human estrogen receptor (ER) alpha or beta subtype and also to gain insights into the structural determinants favoring differential subtype binding, we studied the binding affinities of 74 natural or synthetic estrogens, including more than 50 steroidal analogs of estradiol-17beta (E2) and estrone (E1) for human ER alpha and ER beta. Many of the endogenous estrogen metabolites retained varying degrees of similar binding affinity for ER alpha and ER beta, but some of them retained differential binding affinity for the two subtypes. For instance, several of the D-ring metabolites, such as 16 alpha-hydroxyestradiol (estriol), 16 beta-hydroxyestradiol-17 alpha, and 16-ketoestrone, had distinct preferential binding affinity for human ER beta over ER alpha (difference up to 18-fold). Notably, although E2 has nearly the highest and equal binding affinity for ER alpha and ER beta, E1 and 2-hydroxyestrone (two quantitatively predominant endogenous estrogens in nonpregnant woman) have preferential binding affinity for ER alpha over ER beta, whereas 16 alpha-hydroxyestradiol (estriol) and other D-ring metabolites (quantitatively predominant endogenous estrogens formed during pregnancy) have preferential binding affinity for ER beta over ER alpha. Hence, facile metabolic conversion of parent hormone E2 to various metabolites under different physiological conditions may serve unique functions by providing differential activation of the ER alpha or ER beta signaling system. Lastly, our computational three-dimensional quantitative structure-activity relationship/comparative molecular field analysis of 47 steroidal estrogen analogs for human ER alpha and ER beta yielded useful information on the structural features that determine the preferential activation of the ER alpha and ER beta subtypes, which may aid in the rational design of selective ligands for each human ER subtype.
The release and subsequent reuptake of 5-hydroxytryptamine (5-HT) and cytoplasmic superoxide (O2-*) generation have both been implicated as important factors associated with the degeneration of serotonergic neurons evoked by methamphetamine (MA) and cerebral ischemia-reperfusion (I-R). Such observations raise the possibility that tryptamine-4,5-dione (T-4,5-D), the major in vitro product of the O2-*-mediated oxidation of 5-HT, might be an endotoxicant that contributes to serotonergic neurodegeneration. When incubated with intact rat brain mitochondria, T-4,5-D (< or = 100 microM) uncouples respiration and inhibits state 3. Experiments with rat brain mitochondrial membrane preparations confirm that T-4,5-D evokes irreversible inhibition of NADH-coenzyme Q1 (CoQ1) reductase and cytochrome c oxidase (COX) apparently by covalently modifying key sulfhydryl (SH) residues at or close to the active sites of these respiratory enzyme complexes. Ascorbic acid blocks the inhibition of NADH-CoQ1 reductase by maintaining T-4,5-D predominantly as 4, 5-dihydroxytryptamine (4,5-DHT), thus preventing its reaction with SH residues. In contrast, ascorbic acid potentiates the irreversible inhibition of COX by T-4,5-D. This may be because the T-4,5-D-4, 5-DHT couple redox cycles in the presence of excess ascorbate and molecular oxygen to cogenerate O2-* and H2O2 that together react with trace levels of iron to form an oxo-iron complex that selectively damages COX. Thus, T-4,5-D might be an endotoxicant that, dependent on intraneuronal conditions, mediates irreversible damage to mitochondrial respiratory enzyme complexes and contributes to the serotonergic neurodegeneration evoked by MA and I-R.
A transient energy impairment with resultant release and subsequent reuptake of 5-hydroxytryptamine (5-HT) and NMDA receptor activation with consequent cytoplasmic superoxide (O(2)(-)(*)), nitric oxide (NO(*)), and peroxynitrite (ONOO(-)) generation have all been implicated in a neurotoxic cascade which ultimately leads to the degeneration of serotonergic neurons evoked by methamphetamine (MA) and 3,4-methylenedioxymethamphetamine (MDMA). Such observations raise the possibility that the O(2)(-)(*)/NO(*)/ONOO(-)-mediated oxidation of 5-HT, as it returns via the plasma membrane transporter to the cytoplasm of serotonergic neurons when the MA/MDMA-induced energy impairment begins to subside, may generate an endogenous neurotoxin. In vitro the O(2)(-)(*)/NO(*)/ONOO(-)-mediated oxidation of 5-HT forms tryptamine-4,5-dione (T-4,5-D). When incubated with intact rat brain mitochondria, T-4,5-D strongly inhibits state 3 respiration with pyruvate or alpha-ketoglutarate as substrates at concentrations which do not affect succinate-supported (complex II) respiration. Experiments with freeze-thawed rat brain mitochondria reveal that T-4,5-D inhibits the pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase complexes. These and other properties of T-4,5-D raise the possibility that it may be an endogenously formed intraneuronal metabolite of 5-HT that contributes to the serotonergic neurotoxicity of MA and MDMA.
Tryptamine-4,5-dione (1) is formed by oxidation of 5-hydroxytryptamine by reactive oxygen and reactive nitrogen species. Dione 1 is a powerful electrophile that can covalently modify cysteinyl residues of proteins and deactivate key enzymes. Thus, 1 has been suggested to play a role in the degeneration of serotonergic neurons in brain disorders such as Alzheimer's disease or evoked by amphetamine drugs. However, if formed in the brain, it is also likely that 1 would react with low molecular weight thiols such as cysteine (CySH) and glutathione (GSH). The resulting metabolites might not only contribute to the degeneration of serotonergic neurons but also, perhaps, serve as biomarkers of such neurodegeneration. In this investigation, it is shown that in oxygenated buffer at pH 7.4 dione 1 reacts with CySH and other low molecular weight sulfhydryls such as GSH, N-acetylcysteine, and cysteamine to form, first, the corresponding 7-S-thioethers of the dione. However, unlike the glutathionyl and N-acetylcysteinyl conjugates of 1, the 7-S-cysteinyl conjugate is very unstable at pH 7.4 forming a number of novel products, the nature of which are dependent on the relative concentrations of 1 and CySH. These products have been isolated, and spectroscopic and other evidence is provided in support of their proposed chemical structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.