We study an initial-boundary-value problem for a quasilinear thermoelastic plate of Kirchhoff & Love-type with parabolic heat conduction due to Fourier, mechanically simply supported and held at the reference temperature on the boundary. For this problem, we show the short-time existence and uniqueness of classical solutions under appropriate regularity and compatibility assumptions on the data. Further, we use barrier techniques to prove the global existence and exponential stability of solutions under a smallness condition on the initial data. It is the first result of this kind established for a quasilinear non-parabolic thermoelastic Kirchhoff & Love plate in multiple dimensions.
We consider an initial-boundary-value problem for a thermoelastic Kirchhoff & Love plate, thermally insulated and simply supported on the boundary, incorporating rotational inertia and a quasilinear hypoelastic response, while the heat effects are modeled using the hyperbolic Maxwell-Cattaneo-Vernotte law giving rise to a 'second sound' effect. We study the local wellposedness of the resulting quasilinear mixed-order hyperbolic system in a suitable solution class of smooth functions mapping into Sobolev H k -spaces. Exploiting the sole source of energy dissipation entering the system through the hyperbolic heat flux moment, provided the initial data are small in a lower topology (basic energy level corresponding to weak solutions), we prove a nonlinear stabilizability estimate furnishing global existence & uniqueness and exponential decay of classical solutions.
A novel solution approach to a class of nonlinear statistical inverse problems with nitely many observations collected over a compact interval on the real line blurred by Gaussian white noise of arbitrary intensity is presented. Exploiting the nonparametric taut string estimator, we prove the state recovery strategy is convergent to a solution of the unnoisy problem at the rate of n −1/2 as the number of observations n grows to innity. Illustrations of the method's application to real-world examples from hydrology, civil & electrical engineering are given and an empirical study on the robustness of our approach is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.