BackgroundMicroalgae have emerged as a potential feedstock for biofuels and bioactive components. However, lack of microalgal strains with promising triacylglycerol (TAG) content and desirable fatty acid composition have hindered its commercial feasibility. Attempts on lipid overproduction by metabolic engineering remain largely challenging in microalgae.ResultsIn this study, a microalgal 1-acyl-sn-glycerol-3-phosphate acyltransferase designated AGPAT1 was identified in the model diatom Phaeodactylum tricornutum. AGPAT1 contained four conserved acyltransferase motifs I–IV. Subcellular localization prediction and thereafter immuno-electron microscopy revealed the localization of AGPAT1 to plastid membranes. AGPAT1 overexpression significantly altered the primary metabolism, with increased total lipid content but decreased content of total carbohydrates and soluble proteins. Intriguingly, AGPAT1 overexpression coordinated the expression of other key genes such as DGAT2 and GPAT involved in TAG synthesis, and consequently increased TAG content by 1.81-fold with a significant increase in polyunsaturated fatty acids, particularly EPA and DHA. Moreover, besides increased lipid droplets in the cytosol, ultrastructural observation showed a number of TAG-rich plastoglobuli formed in plastids.ConclusionThe results suggested that AGPAT1 overexpression could elevate TAG biosynthesis and, moreover, revealed the occurrence of plastidial TAG synthesis in the diatom. Overall, our data provide a new insight into microalgal lipid metabolism and candidate target for metabolic engineering.Electronic supplementary materialThe online version of this article (doi:10.1186/s13068-017-0786-0) contains supplementary material, which is available to authorized users.
BackgroundThe marine diatom, Phaeodactylum tricornutum, has become a model for studying lipid metabolism and its triacylglycerol (TAG) synthesis pathway makes it an ideal target for metabolic engineering to improve lipid productivity. However, the genetic background and metabolic networks of fatty acid biosynthesis in diatoms are not well understood. Glycerol-3-phosphate acyltransferase (GPAT) is the critical enzyme that catalyzes the first step of TAG formation. So far, characterization of GPAT in marine microalgae has not been reported, especially at the level of comprehensive sequence-structure and functional analysis.ResultsA GPAT was cloned from P. tricornutum and overexpressed in P. tricornutum. Volumes of oil bodies were produced and the neutral lipid content was increased by twofold determined by Nile red fluorescence staining. Fatty acid composition was analyzed by GC–MS, which showed significantly higher proportion of unsaturated fatty acids compared to wild type.ConclusionThese results suggested that the identified GPAT could upregulate TAG biosynthesis in P. tricornutum. Moreover, this study offers insight into the lipid metabolism of diatoms and supports the role of microalgal strains for biofuels production.
BackgroundMetabolic engineering has emerged as a potential strategy for improving microalgal lipid content through targeted changes to lipid metabolic networks. However, the intricate nature of lipogenesis has impeded metabolic engineering. Therefore, it is very important to identify the crucial metabolic nodes and develop strategies to exploit multiple genes for transgenesis. In an attempt to unravel the microalgal triacylglycerol (TAG) pathway, we overexpressed two key lipogenic genes, glycerol-3-phosphate acyltransferase (GPAT1) and lysophosphatidic acid acyltransferase (LPAT1), in oleaginous Phaeodactylum tricornutum and determined their roles in microalgal lipogenesis.ResultsEngineered P. tricornutum strains showed enhanced growth and photosynthetic efficiency compared with that of the wild-type during the growth phase of the cultivation period. However, both the cell types reached stationary phase on day 7. Overexpression of GPAT1 and LPAT1 increased the TAG content by 2.3-fold under nitrogen-replete conditions without compromising cell growth, and they also orchestrated the expression of other key genes involved in TAG synthesis. The transgenic expression of GPAT1 and LPAT1 influenced the expression of malic enzyme and glucose 6-phosphate dehydrogenase, which enhanced the levels of lipogenic NADPH in the transgenic lines. In addition, GPAT1 and LPAT1 preferred C16 over C18 at the sn-2 position of the glycerol backbone.ConclusionOverexpression of GPAT1 together with LPAT1 significantly enhanced lipid content without affecting growth and photosynthetic efficiency, and they orchestrated the expression of other key photosynthetic and lipogenic genes. The lipid profile for elevated fatty acid content (C16-CoA) demonstrated the involvement of the prokaryotic TAG pathway in marine diatoms. The results suggested that engineering dual metabolic nodes should be possible in microalgal lipid metabolism. This study also provides the first demonstration of the role of the prokaryotic TAG biosynthetic pathway in lipid overproduction and indicates that the fatty acid profile can be tailored to improve lipid production.Electronic supplementary materialThe online version of this article (10.1186/s13068-018-1317-3) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.