Motivation
The heterologous expression of recombinant protein requires host cells, such as Escherichia coli, and the solubility of protein greatly affects the protein yield. A novel and highly accurate solubility predictor that concurrently improves the production yield and minimizes production cost, and that forecasts protein solubility in an E. coli expression system before the actual experimental work is highly sought.
Results
In this paper, EPSOL, a novel deep learning architecture for the prediction of protein solubility in an E. coli expression system, which automatically obtains comprehensive protein feature representations using multidimensional embedding, is presented. EPSOL outperformed all existing sequence-based solubility predictors and achieved 0.79 in accuracy and 0.58 in Matthew’s correlation coefficient. The higher performance of EPSOL permits large-scale screening for sequence variants with enhanced manufacturability and predicts the solubility of new recombinant proteins in an E. coli expression system with greater reliability.
Availability and implementation
EPSOL’s best model and results can be downloaded from GitHub (https://github.com/LiangYu-Xidian/EPSOL)
Supplementary information
Supplementary data are available at Bioinformatics online.
User intended actions are widely seen in many areas. Forecasting these actions and taking proactive measures to optimize business outcome is a crucial step towards sustaining the steady business growth. In this work, we focus on predicting attrition, which is one of typical user intended actions. Conventional attrition predictive modeling strategies suffer a few inherent drawbacks. To overcome these limitations, we propose a novel end-to-end learning scheme to keep track of the evolution of attrition patterns for the predictive modeling. It integrates user activity logs, dynamic and static user profiles based on multi-path learning. It exploits historical user records by establishing a decaying multi-snapshot technique. And finally it employs the precedent user intentions via guiding them to the subsequent learning procedure. As a result, it addresses all disadvantages of conventional methods. We evaluate our methodology on two public data repositories and one private user usage dataset provided by Adobe Creative Cloud. The extensive experiments demonstrate that it can offer the appealing performance in comparison with several existing approaches as rated by different popular metrics. Furthermore, we introduce an advanced interpretation and visualization strategy to effectively characterize the periodicity of user activity logs. It can help to pinpoint important factors that are critical to user attrition and retention and thus suggests actionable improvement targets for business practice. Our work will provide useful insights into the prediction and elucidation of other user intended actions as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.