The current study aims to assign and estimate the total creatine (tCr) signal contribution to the Z-spectrum in mouse brain at 11.7 Tesla. Creatine (Cr), phosphocreatine (PCr) and protein phantoms were used to confirm presence of a guanidinium resonance at this field strength. Wild type (WT) and knockout mice with Guanidinoacetate N-Methyltransferase deficiency (GAMT−/−) that have low Cr and PCr concentrations in the brain were used to assign the tCr contribution to the Z-spectrum. To estimate the total guanidinium concentrations, two pools for the Z-spectrum around 2 ppm were assumed: (i) a Lorentzian function representing the guanidinium CEST at 1.95 ppm in the 11.7 T Z-spectrum; (ii) a background signal that can be fitted by a polynomial function. Comparison between the WT and GAMT−/− mice provided strong evidence for three types of contributions to the peak in the Z-spectrum at 1.95 ppm, namely proteins, Cr and PCr, the latter fitted as tCr. A ratio of 20±7% (Protein) and 80±7% tCr was found in brain with 2 μT and 2 s saturation. Based on phantom experiments, the tCr peak was estimated to consist of about 83±5% Cr and 17±5% PCr. Maps for tCr of mouse brain were generated based on the peak at 1.95 ppm after concentration calibration with in vivo MRS.
IB consisting of CMV, HSV-1, B. burgdorferi, C. pneumoniae and H. pylori is associated with AD. This study supports the role of infection/inflammation in the etiopathogenesis of AD.
Purpose
Recently, natural d-glucose was suggested as a potential biodegradable contrast agent. The feasibility of using d-glucose for dynamic perfusion imaging was explored to detect malignant brain tumors based on blood brain barrier breakdown.
Methods
Mice were inoculated orthotopically with human U87-EGFRvIII glioma cells. Time-resolved glucose signal changes were detected using chemical exchange saturation transfer (glucoCEST) MRI. Dynamic glucose enhanced (DGE) MRI was used to measure tissue response to an intravenous bolus of d-glucose.
Results
DGE images of mouse brains bearing human glioma showed two times higher and persistent changes in tumor compared to contralateral brain. Area-under-curve (AUC) analysis of DGE delineated blood vessels and tumor and had contrast comparable to the AUC determined using dynamic contrast enhanced (DCE) MRI with GdDTPA, both showing a significantly higher AUC in tumor than in brain (p<0.005). Both CEST and relaxation effects contribute to the signal change.
Conclusion
DGE MRI is a feasible technique for studying brain tumor enhancement reflecting differences in tumor blood volume and permeability with respect to normal brain. We expect DGE will provide a low-risk and less expensive alternative to DCE MRI for imaging cancer in vulnerable populations, such as children and patients with renal impairment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.