We report the establishment of a library of micromolded elastomeric micropost arrays to modulate substrate rigidity independently of effects on adhesive and other material surface properties. We demonstrate that micropost rigidity impacts cell morphology, focal adhesions, cytoskeletal contractility, and stem cell differentiation. Furthermore, early changes in cytoskeletal contractility predicted later stem cell fate decisions at the single cell level.Cell function is regulated primarily by extracellular stimuli, including soluble and adhesive factors that bind to cell surface receptors. Recent evidence suggests that mechanical properties of the extracellular matrix (ECM), particularly rigidity, can also mediate cell signaling, proliferation, differentiation, and migration 1,2 . Culturing cells on hydrogels derived from natural ECM proteins at different densities has dramatic effects on cell adhesion, morphology, and function 3 . However, changing densities of the gels impacts not only mechanical rigidity, but also the amount of ligand, leaving uncertainty as to the relevant contribution of these two matrix properties on the observed cellular response. Synthetic ECM analogs such as polyacrylamide or polyethylene glycol gels, which vary rigidity by modulating the amount of cross-linker, has revealed that substrate rigidity alone can modulate many cellular functions, including stem cell differentiation 4-6 . However, altered cross-linker amount impacts not only bulk mechanics, but also molecular-scale material properties including porosity, surface chemistry, backbone flexibility, and binding properties of immobilized adhesive ligands 7,8 . Consequently, whether cells transduce substrate rigidity at the microscopic scale (eg sensing the rigidity between adhesion sites) or the nanoscopic scale (eg sensing local alterations in receptor-ligand binding characteristics) remains an open question 7,8 . While hydrogels will continue to play a major role in characterizing and controlling cell-material interactions, alternative approaches are necessary to further elucidate the basis by which cells sense changes in substrate rigidity.
More than a century ago, it was proposed that mechanical forces could drive tissue formation. However, only recently with the advent of enabling biophysical and molecular technologies are we beginning to understand how individual cells transduce mechanical force into biochemical signals. In turn, this knowledge of mechanotransduction at the cellular level is beginning to clarify the role of mechanics in patterning processes during embryonic development. In this perspective, we will discuss current mechanotransduction paradigms, along with the technologies that have shaped the field of mechanobiology.
Mesenchymal stem cells (MSCs) have potential application for the treatment of ischemic heart diseases. Besides differentiation properties, MSCs protect ischemic cardiomyocytes by secretion of paracrine factors. In this study, we found exosomes enriched with miR-22 were secreted by MSCs following ischemic preconditioning (ExoIPC) and mobilized to cardiomyocytes where they reduced their apoptosis due to ischemia. Interestingly, by time-lapse imaging, we for the first time captured the dynamic shedding of miR-22 loaded exosomes from cytosol to extracellular space. Furthermore, the anti-apoptotic effect of miR-22 was mediated by direct targeting of methyl CpG binding protein 2 (Mecp2). In vivo data showed that delivery of ExoIPC significantly reduced cardiac fibrosis. Our data identified a significant benefit of ExoIPC for the treatment of cardiac diseases by targeting Mecp2 via miR-22.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.