Cathepsin L is an important cysteine protease, but its function in T. spiralis remains unclear. The aim of this research was to explore the biological characteristics of T. spiralis cathepsin L (TsCatL) and its role in T. spiralis-host interactions. Bioinformatic analysis revealed the presence of the cysteine protease active site residues Gln, Cys, His and Asn in mature TsCatL, as well as specific motifs of cathepsin L similar to ERFNIN and GYLND in the prepeptide of TsCatL. Molecular docking of mature TsCatL and E64 revealed hydrophobic effects and hydrogen bonding interactions. Two domains of TsCatL (TsCatL2) were cloned and expressed, and recombinant TsCatL2 (rTsCatL2) was autocatalytically cleaved under acidic conditions to form mature TsCatL. TsCatL was transcribed and expressed in larvae and adults and located in the stichosome, gut and embryo. Enzyme kinetic tests showed that rTsCatL2 degraded the substrate Z-Phe-Arg-AMC under acidic conditions, which was inhibited by E64 and PMSF and enhanced by EDTA, L-cysteine and DTT. The kinetic parameters of rTsCatL2 were a Km value of 48.82 μM and Vmax of 374.4 nM/min at pH 4.5, 37 °C and 5 mM DTT. In addition, it was shown that rTsCatL2 degraded haemoglobin, serum albumin, immunoglobulins (mouse IgG, human IgG and IgM) and extracellular matrix components (fibronectin, collagen I and laminin). The proteolytic activity of rTsCatL2 was host specific and significantly inhibited by E64. rTsCatL2 possesses the natural activity of a sulfhydryl-containing cysteine protease, and TsCatL is an important digestive enzyme that seems to be important for the nutrient acquisition, immune evasion and invasion of Trichinella in the host.
Topological insulators possess strong spin−orbit coupling, which potentially presents efficient charge−spin interconversion. The effective manipulation of this conversion plays a central role in spin-based device applications and is attracting increasing attention nowadays. In this study, by constructing a multifunctional hybrid device Cr-BST/Py/PMN-PT and applying spin-torque ferromagnetic resonance measurement, continuously controllable charge−spin conversion efficiency and even the enhancement of its value up to about 450% are realized via regulation of the ferroelectric polarization in the topological insulator Cr-BST. The band structure of Cr-BST characterized by angle-resolved photoelectron spectroscopy measurement presents an apparent Dirac-like state located at the large band gap of the bulk state near the Fermi level, which indicates a surface statedominated contribution to the charge−spin conversion. Further investigation via density functional theory on the electronic structure of BST verifies that the controllable conversion efficiency dominantly originates from the evolution of the band structure under strain modulation. These findings demonstrate TIs as one of the promising materials for the charge−spin interconversion and its regulation, which are instructive for low-dissipation spintronics devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.