Through a covalent grafting reaction, octadecyl amine (ODA) was grafted on the surface of waste rubber powder (WRP) to obtain an ODA-WRP modifier, which was in turn compounded with a styrene-butadiene-styrene block copolymer (SBS) to prepare ODA-WRP/SBS-modified asphalt. The three major indicators (i.e., dynamic shear rheometer (DSR), multi-stress creep recovery (MSCR), and separation tests) showed that 1-ODA-WRP effectively improved the complex shear modulus (G*), elastic Modulus (G′), and loss modulus (G″) by 36.47%, 40.57%, and 34.77% (64 °C and 10 Hz), respectively, as compared to pristine SBS-modified asphalt. Fluorescence microscopy (FM) results concluded that the enhancement in mechanical properties was accredited to the better compatibility of various components in asphalt and establishment of network structure between ODA-WRP and SBS in ODA-WRP/SBS-modified asphalt. Fourier infrared spectroscopy (FT-IR) and scanning electron microscope (SEM) analyses confirmed the successful synthesis of ODA-WRP. This study could be of great help in synthesizing ODA-WRP asphalt modified with SBS for highways and construction applications.
Water pollution control is one of the major problems currently faced. With the development of photocatalytic technology, more and more new and efficient catalysts have been developed, but most of...
Chemical modification of graphene oxide (GO) by grafting hydrophobic chains on the surface has drawn much attention nowadays in the academic world, and it was suggested that modified GO could lead to new functionalized materials with specific structure and different properties. In this paper, modified GO (M-GO) were synthesized by chemically grafting alkylamines with varying chain lengths on the graphene oxide surface. Successful grafting of alkylamines was confirmed using Fourier transform infrared (FTIR) spectra, X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscope (SEM), and Raman spectroscopy measurements. In addition, we investigated the properties of M-GO as nanodrag reducer in low permeability reservoir water flooding. Water contact angle (CA) measurements revealed that the hydrophobic nature of GO depended on the chain length of the grafted alkylamines. And flooding experiments showed that the hexadecylamine-and octadecylamine-modified GO had an ability to reduce water injection pressure and improve water-phase permeability of the low permeability reservoirs during water flooding. So the M-GO would have potential applications in oilfield exploitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.