Dendritic fibrous nanosilica (DFNS) is a suitable nano-carrier for loading pesticides with radially oriented pores and a large surface area. The microemulsion method is standard method to prepare DFNS, and 1-pentanol is taken to replace cyclohexane as an oil solvent due to its high stability and nontoxic property. The results showed that the volume ratio of 1-pentanol (oil) to water (O/W) and the molar ratio of hexadecyltrimethylammonium bromide (CTAB) to tetraethylorthosilicate (TEOS) had effected on morphology and adsorption properties of DFNS in the water-CTAB-1-pentanol-ethanol-trimethylbenzene (TMB) microemulsion system. DFNS with bicontinuous concentric lamellar morphologies can be synthesized in this microemulsion at the meager O/W volume ratio (0.025-0.045). It features a tight mesoporous structure with a thin dendritic fibrous in 0.03 to 0.04 O/W volume ratio. The particle sizes, surface areas, and porosity of DFNS were positively correlated with the addition of the silica precursor TEOS. The size of DFNS increased from 123 nm to about 220 nm with the CTAB/TEOS molar ratio decreasing from 0.119 to 0.050. When the molar ratio of CTAB to TEOS =0.119, DFNS has a smaller particle size(123 nm) with a larger surface area and abundant honeycomb mesopores; the low O/W volume ratio strategy provides theoretical support for the industrialization development of DFNS and nano-pesticides, which plays a profound role in promoting the sustainable development of pesticide reduction, efficiency and green agriculture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.