The latest work on language representations carefully integrates contextualized features into language model training, which enables a series of success especially in various machine reading comprehension and natural language inference tasks. However, the existing language representation models including ELMo, GPT and BERT only exploit plain context-sensitive features such as character or word embeddings. They rarely consider incorporating structured semantic information which can provide rich semantics for language representation. To promote natural language understanding, we propose to incorporate explicit contextual semantics from pre-trained semantic role labeling, and introduce an improved language representation model, Semantics-aware BERT (SemBERT), which is capable of explicitly absorbing contextual semantics over a BERT backbone. SemBERT keeps the convenient usability of its BERT precursor in a light fine-tuning way without substantial task-specific modifications. Compared with BERT, semantics-aware BERT is as simple in concept but more powerful. It obtains new state-of-the-art or substantially improves results on ten reading comprehension and language inference tasks.
An adaptive minimum action method is proposed for computing the most probable transition paths between stable equilibria in metastable systems that do not necessarily have an underlying energy function, by minimizing the action functional associated with such transition paths. This new algorithm uses the moving mesh strategy to adaptively adjust the grid points over the time interval of transition. Numerical examples are presented to demonstrate the efficiency of the adaptive minimum action method.
We discuss importance sampling schemes for the estimation of finite time exit probabilities of small noise diffusions that involve escape from an equilibrium. A factor that complicates the analysis is that rest points are included in the domain of interest. We build importance sampling schemes with provably good performance both pre-asymptotically, that is, for fixed size of the noise, and asymptotically, that is, as the size of the noise goes to zero, and that do not degrade as the time horizon gets large. Simulation studies demonstrate the theoretical results.
Semantic role labeling (SRL) aims to discover the predicateargument structure of a sentence. End-to-end SRL without syntactic input has received great attention. However, most of them focus on either span-based or dependency-based semantic representation form and only show specific model optimization respectively. Meanwhile, handling these two SRL tasks uniformly was less successful. This paper presents an end-to-end model for both dependency and span SRL with a unified argument representation to deal with two different types of argument annotations in a uniform fashion. Furthermore, we jointly predict all predicates and arguments, especially including long-term ignored predicate identification subtask. Our single model achieves new state-of-the-art results on both span (CoNLL 2005(CoNLL , 2012 and dependency (CoNLL 2008(CoNLL , 2009) SRL benchmarks.
Multi-choice reading comprehension is a challenging task to select an answer from a set of candidate options when given passage and question. Previous approaches usually only calculate question-aware passage representation and ignore passage-aware question representation when modeling the relationship between passage and question, which cannot effectively capture the relationship between passage and question. In this work, we propose dual co-matching network (DCMN) which models the relationship among passage, question and answer options bidirectionally. Besides, inspired by how humans solve multi-choice questions, we integrate two reading strategies into our model: (i) passage sentence selection that finds the most salient supporting sentences to answer the question, (ii) answer option interaction that encodes the comparison information between answer options. DCMN equipped with the two strategies (DCMN+) obtains state-of-the-art results on five multi-choice reading comprehension datasets from different domains: RACE, SemEval-2018 Task 11, ROCStories, COIN, MCTest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.