Vaccination with inactivated vaccines is still the main measure to control foot-and-mouth disease (FMD) in areas where the disease is endemic, and the level of neutralizing antibody in vaccinated animals is directly related to their protection against virus challenge. Currently, neutralizing antibody is mainly detected using the virus neutralization test (VNT) based on cell culture, which is laborious and time-consuming and requires restrictive biocontainment facilities. In this study, two broadly neutralizing antibodies (bnAbs), E46 and F128, were successfully produced using techniques for the isolation of single B cells from peripheral blood mononuclear cells (PBMCs) from bovines sequentially immunized with three topotypes of foot-and-mouth disease virus (FMDV) serotype O. Based on these bnAbs, a blocking enzyme-linked immunosorbent assay (ELISA) for detecting neutralizing antibodies (NA-ELISA) against FMDV serotype O was developed. The specificity and sensitivity of the test were estimated to be 99.21% and 100%, respectively. A significant correlation (P < 0.01) was observed between the NA-ELISA titers and the VNT titers for all sera from vaccinated animals and for all tested strains, suggesting that the NA-ELISA could detect neutralizing antibodies against FMDV serotype O strains of wide antigenic and molecular diversity and could be used for the evaluation of protective immunity.
The level of neutralizing antibodies in vaccinated animals is directly related to their level of protection against a virus challenge. The virus neutralization test (VNT) is a “gold standard” method for detecting neutralizing antibodies against foot-and-mouth disease virus (FMDV). However, VNT requires high-containment facilities that can handle live viruses and is not suitable for large-scale serological surveillance. In this study, a bovine broadly neutralizing monoclonal antibody (W145) against FMDV serotype A was successfully produced using fluorescence-based single-B-cell antibody technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.