N6-methyladenosine (m6A) serves as the most common and conserved internal transcriptional modification. However, the roles of m6A on cervical cancer (CC) tumorigenesis are still unclear. Here, results indicated that METTL3 was significantly upregulated in CC tissue and cells, which was closely correlated with the lymph node metastasis and poor prognosis of CC patients. MeRIP-Seq analysis revealed the m6A profiles in CC cells. Functionally, METTL3 promoted the proliferation and Warburg effect (aerobic glycolysis) of CC cells. Mechanistically, METTL3 targeted the 3’-Untranslated Region (3’-UTR) of hexokinase 2 (HK2) mRNA. Moreover, METTL3 recruited YTHDF1, a m6A reader, to enhance HK2 stability. These findings demonstrated that METTL3 enhanced the HK2 stability through YTHDF1-mediated m6A modification, thereby promoting the Warburg effect of CC, which might promote a novel insight for the CC treatment.
The outgrowth and metastasis of cervical cancer (CC) contribute to its malignancy. Pituitary Tumor Transforming Gene 1 (PTTG1) is upregulated in many types of cancer, and enhances tumor cell growth and metastasis. However, the activation and regulation of PTTG1 in CC, especially by its pseudogene PTTG3P, have not been shown. Here, we detected significantly higher levels of PTTG1 and PTTG3P in the resected CC tissue, compared to the paired adjacent normal cervical tissue. Interestingly, the PTTG3P levels positively correlated with the PTTG1 levels. High PTTG3P levels were associated with poor patients’ survival. In vitro, PTTG1 were increased by PTTG3P overexpression, but was inhibited by PTTG3P depletion in CC cells. However, PTTG3P levels were not altered by modulation of PTTG1 in CC cells, suggesting that PTTG3P is upstream of PTTG1. Moreover, PTTG3P increased CC cell growth, likely through CCNB1-mediated increase in cell proliferation, rather than through decrease in cell apoptosis. Furthermore, PTTG3P increased CC cell invasiveness, likely through upregulation of SNAIL and downregulation of E-cadherin. Our work thus suggests that PTTG3P may promote growth and metastasis of CC through PTTG1.
Background There is growing evidence discussing the role of long non-coding RNAs (lncRNAs) in cervical cancer (CC). We performed this study to explore the impact of exosomal lncRNA urothelial cancer-associated 1 (UCA1) in CC stem cells by sponging microRNA-122-5p (miR-122-5p) and regulating SOX2 expression. Methods CC stem cells (CD133+CaSki) and exosomes were extracted and identified. The synthesized UCA1- and miR-122-5p-related sequences were transfected into CaSki cells, CaSki cells-derived exosomes were extracted and then co-cultured with CD133+CaSki cells. The functional roles of UCA1 and miR-122-5p in self-renewal and differentiation ability of CC stem cells were determined using ectopic expression, knockdown/depletion and reporter assay experiments. An in vivo experiment was performed to verify the in vitro results. Results Up-regulated UCA1 and SOX2 and down-regulated miR-122-5p were found in CaSki-Exo. Exosomes promoted invasion, migration, proliferation and restrained apoptosis of CD133+CaSki cells. Silencing UCA1 or up-regulating miR-122-5p degraded SOX2 expression, and reduced invasion, migration and proliferation of CD133+CaSki cells while advanced apoptosis and suppressed the tumor volume and weight in nude mice. Conclusion Our study provides evidence that CaSki-Exo can promote the self-renewal and differentiation ability of CC stem cells while silencing UCA1 or up-regulating miR-122-5p restrains self-renewal and differentiation of CC stem cells.
This study aimed to investigate the molecular mechanisms underlying the roles of metformin (MET) and Sorafenib (SOR) in the treatment of endometrial hyperplasia (EH) in polycystic ovary syndrome (PCOS). Effects of MET and SOR on the area of endometrium and myometrium were detected. Western blot analysis and immunohistochemistry assays were carried out to detect the levels of mammalian target of rapamycin complex 1 (mTORC1), mTORC2, LC3-II, P62, and Caspase-3 in rats and cultured cells. Furthermore, cell counting kit-8 assay and flow cytometry analysis was carried out to determine the apoptotic profiles of treated cells. MET and SOR could apparently decrease the areas of endometrium and myometrium in PCOS. MET notably enhanced the expression of LC3-II and Caspase-3 in PCOS while substantially reducing the level of mTORC1 and P62. Similarly, SOR also enhanced the expression of LC3-II and Caspase-3 in PCOS while substantially reducing the level of mTORC2 and P62.Treatment with MET and SOR significantly inhibited the proliferation of HCC-94 and HEC-1-A cells while promoting their apoptosis by upregulating the expression of Caspase-3. In cells treated with MET, the expression of mTORC1 and LC3-II was upregulated while the expression of P62 was downregulated. Similarly, in cells treated with SOR, the expression of mTORC2 and LC3-II was also upregulated while the expression of P62 was also downregulated. Furthermore, MET showed no effect on mTORC2 expression, while SOR showed no effect on mTORC1 expression. In this study, we suggested that MET and SOR alleviated the risk of EH in PCOS via the mTORC1/ autophagy/apoptosis axis and mTORC2/autophagy/apoptosis axis, respectively. K E Y W O R D Sapoptosis, autophagy, endometrial hyperplasia, metformin, mTORC1, mTORC2, PCOS, sorafenib
To demonstrate stepwise techniques for the successful use of the laparoendoscopic single-site surgery (LESS) technique for safely performing pectopexy. Design: Stepwise demonstration with narrated video footage (Canadian Task Force classification III). Setting: An academic tertiary care hospital. Interventions: Patient was a 48-year-old, gravida 2 para 2, having had 2 normal spontaneous vaginal deliveries, with stage III anterior vaginal prolapse and stage III uterine prolapse and posterior vaginal prolapse. The preoperative vaginal length was 6 cm. Laparoscopic sacrocolpopexy is the current gold standard for pelvic organ prolapse demonstrating a low recurrence rate; however, it can be technically challenging to perform, particularly in women with obesity or in the event of an anatomic variation. The pectineal ligament, also known as Cooper's ligament, is familiar to surgeons and can be used for a tension-free mesh suspension in patients with prolapse. Integration of LESS and pectopexy is a novel alternative, minimally invasive approach that is more cosmetic, simpler, and effective. The key steps in LESS pectopexy include the following: LESS total laparoscopic hysterectomy with bilateral salpingectomy.Anterior and posterior vaginal cuff dissection. Exposure of the iliopectineal ligament (Cooper's ligament). Tension-free mesh anchoring. Reperitonealization. Measurements and Main Results: The procedure was performed successfully in approximately 80 minutes with a postoperative vaginal length of 6 cm. Postoperative pelvic organ prolapse quantification was stage 0. Conclusion: LESS is a feasible technique for pectopexy in patients with pelvic organ prolapse. A LESS pectopexy results in better cosmesis and offers an alternative for patients with challenging pelvic organ prolapse, such as those with obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.