Topological Dirac semimetal is a newly discovered class of materials which has attracted intense attentions. This material can be viewed as a three-dimensional (3D) analog of graphene and has linear energy dispersion in bulk, leading to a range of exotic transport properties. Here we report direct quantum transport evidence of the 3D Dirac semimetal phase of layered material ZrTe 5 by angular dependent magnetoresistance measurements under high magnetic fields up to 31 T. We observed very clear negative longitudinal magnetoresistance induced by chiral anomaly under the condition of the magnetic field aligned only along the current direction. Pronounced Shubnikov-de Hass (SdH) quantum oscillations in both longitudinal magnetoresistance and transverse Hall resistance were observed, revealing anisotropic light cyclotron masses and high mobility of the system. In particular, a nontrivial π-Berry phase in the SdH oscillations gives clear evidence for 3D Dirac semimetal phase. Furthermore, we observed clear Landau level splitting under high magnetic field, suggesting possible splitting of the Dirac point into Weyl points due to broken time reversal symmetry. Our results indicate that ZrTe 5 is an ideal platform to study 3D massless Dirac and Weyl fermions in a layered compound.
Due to the intriguing anisotropic optical and electrical properties, low‐symmetry 2D materials are attracting a lot of interest both for fundamental studies and fabricating novel electronic and optoelectronic devices. Identifying new promising low‐symmetry 2D materials will be rewarding toward the evolution of nanoelectronics and nano‐optoelectronics. In this work, germanium diarsenide (GeAs2), a group IV–V semiconductor with novel low‐symmetry puckered structure, is introduced as a favorable highly anisotropic 2D material into the rapidly growing 2D family. The structural, vibrational, electrical, and optical in‐plane anisotropy of GeAs2 is systematically investigated both theoretically and experimentally, combined with thickness‐dependent studies. Polarization‐sensitive photodetectors based on few‐layer GeAs2 exhibit highly anisotropic photodetection behavior with lineally dichroic ratio up to ≈2. This work on GeAs2 will excite interests in the less exploited regime of group IV–V compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.