The nanoencapsulation of hydrophobic compounds by miniemulsion polymerization, a convenient one‐step encapsulation technique for nanocapsules, was investigated in terms of the thermodynamics and kinetics. The encapsulation was achieved by polymerization inducing phase separation within minidroplets dispersed in an aqueous phase. Thermodynamic factors (the level and type of surfactant, the level of the hydrophilic comonomer, and the monomer/paraffin ratio), kinetic factors (the level of the crosslinking agent or chain‐transfer agent), and nucleation modes were all found to have a great influence on the latex morphology. Specifically, for a styrene/paraffin system, there were optimum levels of sodium dodecyl sulfate (1.0 wt %), the hydrophilic comonomer (1.0 wt % methyl acrylate acid), and the chain‐transfer agent (0.2 wt % n‐dodecanethiol) for obtaining well‐defined nanocapsules of paraffin with a styrene/paraffin ratio of 1:1. When the styrene/paraffin ratio was reduced, however, it was more difficult to achieve a fully encapsulated particle morphology. Homogeneous nucleation could compete with encapsulation, and this resulted in a pure polymer particle and a half‐moon morphology. Conditions were also found under which complete encapsulation could be observed with a water‐soluble initiator (potassium persulfate), contrary to certain reports. Replacing potassium persulfate with an oil‐soluble initiator (2,2‐azobisisobutyronitrile) had little influence on the morphology under those conditions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2145–2154, 2004
Pseudomonas aeruginosa strain 10265 was recovered from a patient with pneumonia in a Chinese public hospital, and it displays the carbapenem resistance phenotype due to the acquisition of a non-conjugative but mobilizable IncP-6-type plasmid p10265-KPC. p10265-KPC carries a Tn 5563 -borne defective mer locus, and a novel ΔIS Ec33 -associated bla KPC-2 gene cluster without paired inverted repeats and paired direct repeats at both ends. Mobilization of this ΔIS Ec33 -associated element in p10265-KPC would be attributed to homologous recombination-based insertion of a foreign structure Tn 3- IS Apu1 - orf7 -IS Apu2 - IS Kpn27- Δ bla TEM-1 -bla KPC-2 - ΔIS Kpn6- korC-orf6 - klcA- Δ repB into a pre-existent intact IS Ec33 , making IS Ec33 truncated at the 3′ end. The previously reported pCOL-1 represents the first sequenced KPC-producing IncP-6 plasmid, while p10265-KPC is the second one. These two plasmids carry two distinct bla KPC-2 gene clusters, which are inserted into the different sites of the IncP-6 backbone and have different evolutionary histories of assembly and mobilization. This is the first report of identification of the IncP-6-type resistance plasmid in China.
No abstract
This paper describes a robust model for on-line handwritten Japanese text recognition. The method evaluates the likelihood of candidate segmentation paths by combining scores of character pattern size, inner gap, character recognition, single-character position, pair-character position, likelihood of candidate segmentation point and linguistic context. The path score is insensitive to the number of candidate patterns and the optimal path can be found by the Viterbi search. In experiments of handwritten Japanese sentence recognition, the proposed method yielded superior performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.