On account of high capacity and high voltage resulting from anionic redox, Li‐rich layered oxides (LLOs) have become the most promising cathode candidate for the next‐generation high‐energy‐density lithium‐ion batteries (LIBs). Unfortunately, the participation of oxygen anion in charge compensation causes lattice oxygen evolution and accompanying structural degradation, voltage decay, capacity attenuation, low initial columbic efficiency, poor kinetics, and other problems. To resolve these challenges, a rational structural design strategy from surface to bulk by a facile pretreatment method for LLOs is provided to stabilize oxygen redox. On the surface, an integrated structure is constructed to suppress oxygen release, electrolyte attack, and consequent transition metals dissolution, accelerate lithium ions transport on the cathode–electrolyte interface, and alleviate the undesired phase transformation. While in the bulk, B doping into Li and Mn layer tetrahedron is introduced to increase the formation energy of O vacancy and decrease the lithium ions immigration barrier energy, bringing about the high stability of surrounding lattice oxygen and outstanding ions transport ability. Benefiting from the specific structure, the designed material with the enhanced structural integrity and stabilized anionic redox performs an excellent electrochemical performance and fast‐charging property..
Anionic and cationic redox chemistries boost ultrahigh specific capacities of Li‐rich Mn‐based oxides cathodes (LRMO). However, irreversible oxygen evolution and sluggish kinetics result in continuous capacity decay and poor rate performance, restricting the commercial fast‐charging cathodes application for lithium ion batteries. Herein, the local electronic structure of LRMO is appropriately modulated to alleviate oxygen release, enhance anionic redox reversibility, and facilitate Li+ diffusion via facile surface defect engineering. Concretely, oxygen vacancies integrated on the surface of LRMO reduce the density of states of O 2p band and trigger much delocalized electrons to distribute around the transition metal, resulting in less oxygen release, enhancing reversible anionic redox and the MnO6 octahedral distortion. Besides, partially reduced Mn and lattice vacancies synchronously stimulate the electrochemical activity and boost the electronic conductivity, Li+ diffusion rate, and fast charge transfer. Therefore, the modified LRMO exhibits enhanced cyclic stability and fast‐charging capability: a high discharging capacity of 212.6 mAh·g−1 with 86.98% capacity retention after 100 cycles at 1 C is obtained and to charge to its 80%, SOC is shortened to 9.4 min at 5 C charging rate. This work will draw attention to boosting the fast‐charging capability of LRMO via the local electronic structure modulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.