In this article, we successfully prepared the WO 3 /g-C 3 N 4 (WO/CN) heterojunction photocatalyst with high photocatalytic CO 2 reduction performance by the simple impregnation− calcination process. Transmission electron microscopy (TEM) analysis shows that the WO 3 nanoparticles (WO 3 NPs) are successfully attached to the g-C 3 N 4 nanosheets (CN). UV−vis reflectance spectrum (UV−vis DRS), photoluminescence spectrum (PL), and photoelectrochemical (PEC) results confirm that the building of a WO/CN heterojunction is beneficial to the transfer and separation processes of the photogenerated carriers in the photocatalysts. The photoreduction performances of the obtained samples are indicated by the photocatalytic CO 2 reduction process under UV and visible light irradiation. These experiments prove that the 10-WO/CN photocatalyst has the best photoreduction performance compared to other obtained photocatalysts. The yields of CO and CH 4 in the presence of the 10-WO/CN photocatalyst are 8.9 and 47.7 times larger than those of pure CN under UV irradiation. For the irradiation of visible light, the yield rates of CO and CH 4 over 10-WO/CN are 8.6 and 7.5 times greater than those of the CN. On the basis of these photocatalytic results and electron spin resonance (ESR) results, the possible direct Z-scheme electron transfer mechanism for 10-WO/CN with the improved photoreduction CO 2 activity has been discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.