Photodetector based on two‐dimensional (2D) materials is an ongoing quest in optoelectronics. 2D photodetectors are generally efficient at low illuminating power but suffer severe recombination processes at high power, which results in the sublinear power‐dependent photoresponse and lower optoelectronic efficiency. The desirable superlinear photocurrent is mostly achieved by sophisticated 2D heterostructures or device arrays, while 2D materials rarely show intrinsic superlinear photoresponse. This work reports the giant superlinear power dependence of photocurrent based on multilayer Ta2NiS5. While the fabricated photodetector exhibits good sensitivity (3.1 mS W−1per □) and fast photoresponse (31 µs), the bias‐, polarization‐, and spatial‐resolved measurements point to an intrinsic photoconductive mechanism. By increasing the incident power density from 1.5 to 200 µW µm−2, the photocurrent power dependence varies from sublinear to superlinear. At higher illuminating conditions, prominent superlinearity is observed with a giant power exponent of γ = 1.5. The unusual photoresponse can be explained by a two‐recombination‐center model where density of states of the recombination centers (RC) effectively closes all recombination channels. The photodetector is integrated into camera for taking photos with enhanced contrast due to superlinearity. This work provides an effective route to enable higher optoelectronic efficiency at extreme conditions.
EuCd2X2 (X = P, As) is a new class of magnetic topological materials discovered recently. The electronic structure and the band topology are intimately coupled with its magnetism, giving rise to interesting properties such as spin fluctuation and colossal magnetoresistance. Phonon excitation can contribute to the quasi-particle response of the topological matters through spin-lattice and electron–phonon coupling. However, the phonon properties of this material family remain unexplored. Here we report a comparative study of Raman-active vibration modes in EuCd2X2 (X = P, As) by means of angle-resolved, temperature-resolved, and magnetic-field-resolved Raman spectroscopy together with the first-principle calculations and Raman tensor analysis. The phonon properties can be tuned by chemical potential and temperature within the material family. All the phonon modes are softened with increased chemical pressure by replacing P with As. Angle-resolved polarized Raman spectroscopy reveals the configuration-sensitive Raman activity and the isotropic intensity response. In addition, the magneto-Raman spectrum indicates the stability of Raman-active vibration modes against the magnetic field at room temperature. Our work sheds light on the phonon dynamics of magnetic topological matters, which are potentially coupled with the topological charge and spin excitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.