BACKGROUND: Auricularia auricula is of important nutritional value, although its utilization or consumption are mainly under the original form with no further processing. Indeed, its liquid or other fermented products contribute to improved digestion and absorption of nutrients.RESULTS: The present study used Lactiplantibacillus plantarum to ferment A. auricula juice after an initial processing comprising superfine grinding and high-pressure homogenization. The content of probiotic bacteria in the juice of A. auricula reached 8.48 log colony-forming units mL −1 after 24 h of fermentation under 37 °C, with the addition of 3% carbon and 0.3% nitrogen source. Meanwhile, the antioxidant activity was increased approximately two-fold, as well as the enriched volatile flavors, both effectively cover up the unwelcoming earthy smell of A. auricula. Furthermore, the storage stability was also strengthened up to 28 days. CONCLUSION: In summary, the introduced fermentation process not only realized the purpose of improving the nutritional value of A. auricula, but also effectively upgraded the sensory evaluation of A. auricula products.
BACKGROUND: The fungal pathogen Botrytis cinerea infects a broad range of horticultural plants worldwide, resulting in significant economic losses. A derivative of chitosan, oligochitosan, has been reported to be an eco-friendly alternative to synthetic fungicides. RESULTS:Oligochitosan can greatly inhibit B. cinerea spore germination and induce protein carbonylation. To further investigate the molecular mechanism underlying the inhibitory effect, a comparative proteome analysis was conducted of oligochitosan-treated versus non-treated B. cinerea spores. The cellular proteins were obtained from B. cinerea spore samples and subjected to two-dimensional gel electrophoresis. In total, 21 differentially expressed proteins (DEPs) were identified. Three DEPs were up-regulated in the oligochitosan-treated versus the untreated spores, including scytalone dehydratase and a serine carboxypeptidase III precursor. By contrast, seven DEPs, including Hsp 88 and cell division cycle protein 48, were down-regulated by oligochitosan treatment. Notably, 10 DEPs, including phosphatidylserine decarboxylase proenzyme and ATP-dependent molecular chaperone HSC82, were only detected in the control spores, whereas one DEP, a non-annotated predicted protein, was only detected in the oligochitosan-treated spores. CONCLUSION: Oligochitosan may affect the spore germination of B. cinerea by impairing protein function. These findings have practical implications with respect to the use of oligochitosan for controlling fungal pathogens. A, Potential applications and antifungal activities of engineered nanomaterials against gray J Sci Food Agric 2019; 99: 2622-2628
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.