Consistent with previous studies, the present study revealed that personality traits play an important role in predicting Chinese drivers' risky driving behaviors. In addition, Chinese drivers' personality characteristics were also associated with accident involvement.
Glial glutamate transporter-1 (GLT-1) plays an essential role in removing glutamate from the extracellular space and maintaining the glutamate below neurotoxic level in the brain. To explore whether GLT-1 plays a role in the acquisition of brain ischemic tolerance (BIT) induced by cerebral ischemic preconditioning (CIP), the present study was undertaken to observe in vivo changes in the expression of GLT-1 and glial fibrillary acidic protein (GFAP) in the CA1 hippocampus during the induction of BIT, and the effect of dihydrokainate (DHK), an inhibitor of GLT-1, on the acquisition of BIT in rats. Immunohistochemistry for GFAP showed that the processes of astrocytes were prolonged after a CIP 2 days before the lethal ischemic insult, which could protect pyramidal neurons in the CA1 hippocampus against delayed neuronal death induced normally by lethal ischemic insult. The prolonged processes extended into the area between the pyramidal neurons and tightly surrounded them. These changes made the pyramidal layer look like a 'shape grid'. Simultaneously, the prolonged and extended processes showed a great deal of GLT-1. Western blotting analysis showed significant upregulation of GLT-1 expression after the CIP, especially when it was administered 2 days before the subsequent lethal ischemic insult. Neuropathological evaluation by thionin staining showed that DHK dose-dependently blocked the protective role of CIP against delayed neuronal death induced normally by lethal brain ischemia. It might be concluded that the surrounding of pyramidal neurons by astrocytes and upregulation of GLT-1 induced by CIP played an important role in the acquisition of the BIT induced by CIP.
Background: Hepatocellular carcinoma (HCC) is a common tumor characterized by high morbidity and mortality rates. The importance of circRNA in cancer diagnosis has been established. The study aimed to identify differentiallyexpressed circRNAs (DECs) in human blood exosomes from patients with HCC and to investigate their diagnostic value. Methods: The circRNA expression profiles of HCC and normal human blood samples were downloaded and processed from the exoRBase database. At the cutoff criteria of a fold change (FC) > 2.0 and P < 0.05, DECs were screened utilizing the limma package in the R software. A receiver operator characteristic curve (ROC) was used to study its diagnostic value. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis was performed to confirm the three-circRNAs expression in the blood samples with HCC. Various bioinformatics tools were used to characterize the potential biological pathways induced by circRNAs. Results: Compared with the normal samples, seven up-regulated and five down-regulated circRNAs were determined in the HCC samples. ROC analyses demonstrated that hsa_circ_0004001, hsa_circ_0004123, hsa_circ_0075792, and a combination of the three biomarkers exhibited higher sensitivity and specificity. The qRT-PCR confirmed that the three circRNAs were upregulated in the blood samples with HCC. Chi squared tests implied that the expression of three circRNAs was positively correlated with the TNM stage and tumor size. The circRNAs participated in VEGF/VEGFR, PI3K/Akt, mTOR, and Wnt signaling pathways by targeting miRNAs. Conclusions: The study established the existence of seven up-regulated and five down-regulated circRNAs in HCC. Additionally, hsa_circ_0004001, hsa_circ_0004123, hsa_circ_0075792, and a combination of the three were utilized as valuable diagnostic biomarkers in HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.