Triglyceride (TG) is a complex phenotype influenced by both genetic and environmental factors. Recent genome-wide association studies (GWAS) have identified genes or loci affecting lipid levels; however, such studies in Chinese populations are limited. A two-stage GWAS were conducted to identify genetic variants that were associated with TG in a Chinese population of 3495 men. Gene-environment interactions on serum TG levels were further investigated for the seven single nucleotide polymorphisms (SNPs) that were studied in both stages. Two previously reported SNPs (rs651821 in APOA5, rs328 in LPL) were replicated in the second stage, and the combined P-values were 9.19 × 10(-26) and 1.41 × 10(-9) for rs651821 and rs328, respectively. More importantly, a significant interaction between aldehyde dehydrogenase 2 (ALDH2) rs671 and alcohol consumption on serum TG levels were observed (P = 3.34 × 10(-5)). Rs671 was significantly associated with serum TG levels in drinkers (P = 1.90 × 10(-10)), while no association was observed in non-drinkers (P > 0.05). For drinkers, men carrying the AA/AG genotype have significantly lower serum TG levels, compared with men carrying the GG genotype. For men with the GG genotype, the serum TG levels increased with the quantity of alcohol intake (P = 1.28 × 10(-8) for trend test). We identified a novel, significant interaction effect between alcohol consumption and the ALDH2 rs671 polymorphism on TG levels, which suggests that the effect of alcohol intake on TG occurs in a two-faceted manner. Just one drink can increase TG level in susceptible individuals who carry the GG genotype, while individuals carrying AA/AG genotypes may actually benefit from moderate drinking.
Complement C3 and C4 play key roles in the main physiological activities of complement system, and their deficiencies or over-expression are associated with many clinical infectious or immunity diseases. A two-stage genome-wide association study (GWAS) was performed for serum levels of C3 and C4. The first stage was conducted in 1,999 healthy Chinese men, and the second stage was performed in an additional 1,496 subjects. We identified two SNPs, rs3753394 in CFH gene and rs3745567 in C3 gene, that are significantly associated with serum C3 levels at a genome-wide significance level (P = 7.33×10−11 and P = 1.83×10−9, respectively). For C4, one large genomic region on chromosome 6p21.3 is significantly associated with serum C4 levels. Two SNPs (rs1052693 and rs11575839) were located in the MHC class I area that include HLA-A, HLA-C, and HLA-B genes. Two SNPs (rs2075799 and rs2857009) were located 5′ and 3′ of C4 gene. The other four SNPs, rs2071278, rs3763317, rs9276606, and rs241428, were located in the MHC class II region that includes HLA-DRA, HLA-DRB, and HLA-DQB genes. The combined P-values for those eight SNPs ranged from 3.19×10−22 to 5.62×10−97. HBsAg-positive subjects have significantly lower C3 and C4 protein concentrations compared with HBsAg-negative subjects (P<0.05). Our study is the first GWAS report which shows genetic components influence the levels of complement C3 and C4. Our significant findings provide novel insights of their related autoimmune, infectious diseases, and molecular mechanisms.
Preeclampsia is a pregnancy-specific disorder of new-onset hypertension and proteinuria after 20 weeks' gestation, often resulting in poor outcome. Previous studies demonstrated that apelin is an endogenous active peptide with visodilation and anti-oxidative stress capabilities. The present study investigated the effects of apelin in a rat model of preeclampsia induced by reduced uterine perfusion pressure (RUPP). Rats with RUPP displayed hypertension and poor pregnancy outcomes, such as decreased fetal and placental weight. Of note, apelin treatment significantly ameliorated the symptoms of preeclampsia, improved the impaired endothelial nitric oxide synthase/nitric oxide signaling and attenuated activation of oxidative stress in RUPP rats. Apelin may be a potential agent for preventing and treating preeclampsia.
Acellular matrix materials have been widely used to repair various tissues and organs. According to the plastic principle, when a part of the body is lost, it should be replaced with a similar material. Therefore, the use of a homologous organ-specific acellular vaginal tissue in vagina reconstruction repair surgery may show good results. However, the acellular vagina matrix (AVM) form large vertebrates is difficult to isolate. In this study, we described a multistep method to prepare porcine AVM and evaluated the efficacy of acellularization. We also investigated the biomechanical properties, biological activity elements, and biocompatibility of the porcine AVM. We then used this material to reconstruct a rat vagina and performed further morphologic and functional analyses. Small intestinal submucosa (SIS), which is a commonly used acellular matrix material, was used in a control group. Histological examination, DNA content analysis, and agarose gel electrophoresis revealed that the decellularization procedure was effective. The AVM had acceptable biomechanical properties and sufficient growth factor production (VEGF, FGF, TGF-β1, and PDGF-BB) compared with that of the SIS. Subcutaneous transplantation in rats showed that the AVM had good biocompatibility. The tissue-engineered vagina using the AVM more resembled normal-appearing tissue than did that using SIS following morphologic and functional analyses. The AVM has great potential for application in vaginal reconstructive surgery. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1949-1959, 2017.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.