The focus of this paper is the design and station keeping of repeat-groundtrack orbits for Sun-synchronous satellite. A method to compute the semimajor axis of the orbit is presented together with a station-keeping strategy to compensate for the perturbation due to the atmospheric drag. The results show that the nodal period converges gradually with the increase of the order used in the zonal perturbations up to J15. A differential correction algorithm is performed to obtain the nominal semimajor axis of the reference orbit from the inputs of the desired nodal period, eccentricity, inclination and argument of perigee. To keep the satellite in the proximity of the repeat-groundtrack condition, a practical orbit maintenance strategy is proposed in the presence of errors in the orbital measurements and control, as well as in the estimation of the semimajor axis decay rate. The performance of the maintenance strategy is assessed via the Monte Carlo simulation and the validation in a high fidelity model. Numerical simulations substantiate the validity of proposed mean-elements-based orbit maintenance strategy for repeat-groundtrack orbits.
Maintaining local consistencies can improve the efficiencies of the search algorithms solving constraint satisfaction problems (CSPs). Comparing with arc consistency which is the most widely used local consistency, stronger local consistencies can make the search space smaller while they require higher computational cost. In this paper, we make an attempt on the compromise between the pruning ability and the computational cost. A new local consistency called singleton strong bound consistency (SSBC) and its light version, light SSBC, are proposed. The search algorithm maintaining light SSBC can outperform MAC on a considerable number of problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.