A vaporizer is a key component in a liquified natural gas (LNG) engine, whose heat dissipation capacity determines the reliability of LNG engines. In the present study, the heat dissipation performance of LNG vaporizers is investigated using numerical simulation by a thermal-solid coupling method. Simulation results were first compared with experimental data to validate the thermal-solid coupling method and a good agreement between the numerical and experimental results was achieved. The experimentally validated numerical method was then used to predict the heat dissipation performance of the LNG vaporizers. The simulation results show that the temperature of the vaporized natural gas at the outlet of the vaporizer is quite uniform, which is about 40 °C and high enough for the vaporizer to provide a stable gas supply to the LNG engine. A unique design of the vaporizer's coolant inlet can take advantage of coolant flows to enhance heat transfer in the engine cooling process, thereby promoting the heat exchange within the engine and increasing the heat exchange capacity of the LNG vaporizer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.