Clinically, intra-articular administration can hardly achieve the truly targeted therapy, and the drugs are usually insufficient to show local and long-term therapeutic effects because of their rapid clearance. Herein, inspired by the phenomenon that bees track the scent of flowers to collect nectar, we developed cartilage-targeting hydrogel microspheres with reactive oxygen species (ROS)-responsive ability via combining the microfluidic method and photopolymerization processes to integrate cartilagetargeting peptides and ROS-responsive nanoparticles in the hydrogel matrix. The hydrogel microspheres with cartilage-targeting properties promoted better retention in the joint cavity and enhanced cellular uptake of the nanoparticles. Moreover, the ROSresponsive nanoparticles could react with osteoarthritis (OA)-induced intracellular ROS, resulting in the depolymerization of nanoparticles, which could not only eliminate excess ROS and reduce inflammation but also promote the release of dexamethasone (Dex) and kartogenin (KGN) in situ, realizing effective OA therapy. It was demonstrated that this hydrogel microsphere showed favorable ROS-responsive ability and enhanced chondrogenic differentiation as well as the downregulation of pro-inflammatory factors in vitro. Additionally, the hydrogel microspheres, similar to bees, could target and effectively repair cartilage in the OA model. Thus, the injectable hydrogel microspheres exerted an excellent potential to repair OA and may also provide an effective avenue for inflammatory bowel disease therapy.
The enhancement of tumor targeting and cellular uptake of drugs are significant factors in maximizing anticancer therapy and minimizing the side effects of chemotherapeutic drugs. A key challenge remains to explore stimulus-responsive polymeric nanoparticles to achieve efficient drug delivery. In this study, doxorubicin conjugated polymer (Poly-Dox) with light-responsiveness was synthesized, which can self-assemble to form polymeric micelles (Poly-Dox-M) in water. As an inert structure, the polyethylene glycol (PEG) can shield the adsorption of protein and avoid becoming a protein crown in the blood circulation, improving the tumor targeting of drugs and reducing the cardiotoxicity of doxorubicin (Dox). Besides, after ultraviolet irradiation, the amide bond connecting Dox with PEG can be broken, which induced the responsive detachment of PEG and enhanced cellular uptake of Dox. Notably, the results of immunohistochemistry in vivo showed that Poly-Dox-M had no significant damage to normal organs. Meanwhile, they showed efficient tumor-suppressive effects. This nano-delivery system with the light-responsive feature might hold great promises for the targeted therapy for osteosarcoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.